| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- from .ch04 import generate_text_simple
- import json
- import os
- import urllib.request
- import numpy as np
- import matplotlib.pyplot as plt
- from matplotlib.ticker import MaxNLocator
- import torch
- from tqdm import tqdm
- def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
- # For-loop is the same as before: Get logits, and only focus on last time step
- for _ in range(max_new_tokens):
- idx_cond = idx[:, -context_size:]
- with torch.no_grad():
- logits = model(idx_cond)
- logits = logits[:, -1, :]
- # New: Filter logits with top_k sampling
- if top_k is not None:
- # Keep only top_k values
- top_logits, _ = torch.topk(logits, top_k)
- min_val = top_logits[:, -1]
- logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
- # New: Apply temperature scaling
- if temperature > 0.0:
- logits = logits / temperature
- # Apply softmax to get probabilities
- probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
- # Sample from the distribution
- idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
- # Otherwise same as before: get idx of the vocab entry with the highest logits value
- else:
- idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
- if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
- break
- # Same as before: append sampled index to the running sequence
- idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
- return idx
- def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
- eval_freq, eval_iter, start_context, tokenizer):
- # Initialize lists to track losses and tokens seen
- train_losses, val_losses, track_tokens_seen = [], [], []
- tokens_seen, global_step = 0, -1
- # Main training loop
- for epoch in range(num_epochs):
- model.train() # Set model to training mode
- for input_batch, target_batch in train_loader:
- optimizer.zero_grad() # Reset loss gradients from previous batch iteration
- loss = calc_loss_batch(input_batch, target_batch, model, device)
- loss.backward() # Calculate loss gradients
- optimizer.step() # Update model weights using loss gradients
- tokens_seen += input_batch.numel()
- global_step += 1
- # Optional evaluation step
- if global_step % eval_freq == 0:
- train_loss, val_loss = evaluate_model(
- model, train_loader, val_loader, device, eval_iter)
- train_losses.append(train_loss)
- val_losses.append(val_loss)
- track_tokens_seen.append(tokens_seen)
- print(f"Ep {epoch+1} (Step {global_step:06d}): "
- f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
- # Print a sample text after each epoch
- generate_and_print_sample(
- model, tokenizer, device, start_context
- )
- return train_losses, val_losses, track_tokens_seen
- def evaluate_model(model, train_loader, val_loader, device, eval_iter):
- model.eval()
- with torch.no_grad():
- train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
- val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
- model.train()
- return train_loss, val_loss
- def generate_and_print_sample(model, tokenizer, device, start_context):
- model.eval()
- context_size = model.pos_emb.weight.shape[0]
- encoded = text_to_token_ids(start_context, tokenizer).to(device)
- with torch.no_grad():
- token_ids = generate_text_simple(
- model=model, idx=encoded,
- max_new_tokens=50, context_size=context_size
- )
- decoded_text = token_ids_to_text(token_ids, tokenizer)
- print(decoded_text.replace("\n", " ")) # Compact print format
- model.train()
- def assign(left, right):
- if left.shape != right.shape:
- raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
- return torch.nn.Parameter(torch.tensor(right))
- def load_weights_into_gpt(gpt, params):
- gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
- gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
- for b in range(len(params["blocks"])):
- q_w, k_w, v_w = np.split(
- (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
- gpt.trf_blocks[b].att.W_query.weight = assign(
- gpt.trf_blocks[b].att.W_query.weight, q_w.T)
- gpt.trf_blocks[b].att.W_key.weight = assign(
- gpt.trf_blocks[b].att.W_key.weight, k_w.T)
- gpt.trf_blocks[b].att.W_value.weight = assign(
- gpt.trf_blocks[b].att.W_value.weight, v_w.T)
- q_b, k_b, v_b = np.split(
- (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
- gpt.trf_blocks[b].att.W_query.bias = assign(
- gpt.trf_blocks[b].att.W_query.bias, q_b)
- gpt.trf_blocks[b].att.W_key.bias = assign(
- gpt.trf_blocks[b].att.W_key.bias, k_b)
- gpt.trf_blocks[b].att.W_value.bias = assign(
- gpt.trf_blocks[b].att.W_value.bias, v_b)
- gpt.trf_blocks[b].att.out_proj.weight = assign(
- gpt.trf_blocks[b].att.out_proj.weight,
- params["blocks"][b]["attn"]["c_proj"]["w"].T)
- gpt.trf_blocks[b].att.out_proj.bias = assign(
- gpt.trf_blocks[b].att.out_proj.bias,
- params["blocks"][b]["attn"]["c_proj"]["b"])
- gpt.trf_blocks[b].ff.layers[0].weight = assign(
- gpt.trf_blocks[b].ff.layers[0].weight,
- params["blocks"][b]["mlp"]["c_fc"]["w"].T)
- gpt.trf_blocks[b].ff.layers[0].bias = assign(
- gpt.trf_blocks[b].ff.layers[0].bias,
- params["blocks"][b]["mlp"]["c_fc"]["b"])
- gpt.trf_blocks[b].ff.layers[2].weight = assign(
- gpt.trf_blocks[b].ff.layers[2].weight,
- params["blocks"][b]["mlp"]["c_proj"]["w"].T)
- gpt.trf_blocks[b].ff.layers[2].bias = assign(
- gpt.trf_blocks[b].ff.layers[2].bias,
- params["blocks"][b]["mlp"]["c_proj"]["b"])
- gpt.trf_blocks[b].norm1.scale = assign(
- gpt.trf_blocks[b].norm1.scale,
- params["blocks"][b]["ln_1"]["g"])
- gpt.trf_blocks[b].norm1.shift = assign(
- gpt.trf_blocks[b].norm1.shift,
- params["blocks"][b]["ln_1"]["b"])
- gpt.trf_blocks[b].norm2.scale = assign(
- gpt.trf_blocks[b].norm2.scale,
- params["blocks"][b]["ln_2"]["g"])
- gpt.trf_blocks[b].norm2.shift = assign(
- gpt.trf_blocks[b].norm2.shift,
- params["blocks"][b]["ln_2"]["b"])
- gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
- gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
- gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
- def text_to_token_ids(text, tokenizer):
- encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
- encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
- return encoded_tensor
- def token_ids_to_text(token_ids, tokenizer):
- flat = token_ids.squeeze(0) # remove batch dimension
- return tokenizer.decode(flat.tolist())
- def calc_loss_batch(input_batch, target_batch, model, device):
- input_batch, target_batch = input_batch.to(device), target_batch.to(device)
- logits = model(input_batch)
- loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
- return loss
- def calc_loss_loader(data_loader, model, device, num_batches=None):
- total_loss = 0.
- if len(data_loader) == 0:
- return float("nan")
- elif num_batches is None:
- num_batches = len(data_loader)
- else:
- # Reduce the number of batches to match the total number of batches in the data loader
- # if num_batches exceeds the number of batches in the data loader
- num_batches = min(num_batches, len(data_loader))
- for i, (input_batch, target_batch) in enumerate(data_loader):
- if i < num_batches:
- loss = calc_loss_batch(input_batch, target_batch, model, device)
- total_loss += loss.item()
- else:
- break
- return total_loss / num_batches
- def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
- fig, ax1 = plt.subplots(figsize=(5, 3))
- # Plot training and validation loss against epochs
- ax1.plot(epochs_seen, train_losses, label="Training loss")
- ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
- ax1.set_xlabel("Epochs")
- ax1.set_ylabel("Loss")
- ax1.legend(loc="upper right")
- ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) # only show integer labels on x-axis
- # Create a second x-axis for tokens seen
- ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
- ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
- ax2.set_xlabel("Tokens seen")
- fig.tight_layout() # Adjust layout to make room
- plt.savefig("loss-plot.pdf")
- plt.show()
- def download_and_load_gpt2(model_size, models_dir):
- import tensorflow as tf
- # Validate model size
- allowed_sizes = ("124M", "355M", "774M", "1558M")
- if model_size not in allowed_sizes:
- raise ValueError(f"Model size not in {allowed_sizes}")
- # Define paths
- model_dir = os.path.join(models_dir, model_size)
- base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
- backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
- filenames = [
- "checkpoint", "encoder.json", "hparams.json",
- "model.ckpt.data-00000-of-00001", "model.ckpt.index",
- "model.ckpt.meta", "vocab.bpe"
- ]
- # Download files
- os.makedirs(model_dir, exist_ok=True)
- for filename in filenames:
- file_url = os.path.join(base_url, model_size, filename)
- backup_url = os.path.join(backup_base_url, model_size, filename)
- file_path = os.path.join(model_dir, filename)
- download_file(file_url, file_path, backup_url)
- # Load settings and params
- tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
- settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
- params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
- return settings, params
- def download_file(url, destination, backup_url=None):
- def _attempt_download(download_url):
- with urllib.request.urlopen(download_url) as response:
- # Get the total file size from headers, defaulting to 0 if not present
- file_size = int(response.headers.get("Content-Length", 0))
- # Check if file exists and has the same size
- if os.path.exists(destination):
- file_size_local = os.path.getsize(destination)
- if file_size == file_size_local:
- print(f"File already exists and is up-to-date: {destination}")
- return True # Indicate success without re-downloading
- block_size = 1024 # 1 Kilobyte
- # Initialize the progress bar with total file size
- progress_bar_description = os.path.basename(download_url)
- with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
- with open(destination, "wb") as file:
- while True:
- chunk = response.read(block_size)
- if not chunk:
- break
- file.write(chunk)
- progress_bar.update(len(chunk))
- return True
- try:
- if _attempt_download(url):
- return
- except (urllib.error.HTTPError, urllib.error.URLError):
- if backup_url is not None:
- print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
- try:
- if _attempt_download(backup_url):
- return
- except urllib.error.HTTPError:
- pass
- # If we reach here, both attempts have failed
- error_message = (
- f"Failed to download from both primary URL ({url})"
- f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
- "\nCheck your internet connection or the file availability.\n"
- "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
- )
- print(error_message)
- except Exception as e:
- print(f"An unexpected error occurred: {e}")
- def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
- import tensorflow as tf
- # Initialize parameters dictionary with empty blocks for each layer
- params = {"blocks": [{} for _ in range(settings["n_layer"])]}
- # Iterate over each variable in the checkpoint
- for name, _ in tf.train.list_variables(ckpt_path):
- # Load the variable and remove singleton dimensions
- variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
- # Process the variable name to extract relevant parts
- variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
- # Identify the target dictionary for the variable
- target_dict = params
- if variable_name_parts[0].startswith("h"):
- layer_number = int(variable_name_parts[0][1:])
- target_dict = params["blocks"][layer_number]
- # Recursively access or create nested dictionaries
- for key in variable_name_parts[1:-1]:
- target_dict = target_dict.setdefault(key, {})
- # Assign the variable array to the last key
- last_key = variable_name_parts[-1]
- target_dict[last_key] = variable_array
- return params
|