| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- from .ch03 import MultiHeadAttention, PyTorchMultiHeadAttention
- import torch
- import torch.nn as nn
- class LayerNorm(nn.Module):
- def __init__(self, emb_dim):
- super().__init__()
- self.eps = 1e-5
- self.scale = nn.Parameter(torch.ones(emb_dim))
- self.shift = nn.Parameter(torch.zeros(emb_dim))
- def forward(self, x):
- mean = x.mean(dim=-1, keepdim=True)
- var = x.var(dim=-1, keepdim=True, unbiased=False)
- norm_x = (x - mean) / torch.sqrt(var + self.eps)
- return self.scale * norm_x + self.shift
- class GELU(nn.Module):
- def __init__(self):
- super().__init__()
- def forward(self, x):
- return 0.5 * x * (1 + torch.tanh(
- torch.sqrt(torch.tensor(2.0 / torch.pi)) *
- (x + 0.044715 * torch.pow(x, 3))
- ))
- class FeedForward(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.layers = nn.Sequential(
- nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
- GELU(),
- nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
- )
- def forward(self, x):
- return self.layers(x)
- class TransformerBlock(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.att = MultiHeadAttention(
- d_in=cfg["emb_dim"],
- d_out=cfg["emb_dim"],
- context_length=cfg["context_length"],
- num_heads=cfg["n_heads"],
- dropout=cfg["drop_rate"],
- qkv_bias=cfg["qkv_bias"])
- self.ff = FeedForward(cfg)
- self.norm1 = LayerNorm(cfg["emb_dim"])
- self.norm2 = LayerNorm(cfg["emb_dim"])
- self.drop_resid = nn.Dropout(cfg["drop_rate"])
- def forward(self, x):
- # Shortcut connection for attention block
- shortcut = x
- x = self.norm1(x)
- x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
- x = self.drop_resid(x)
- x = x + shortcut # Add the original input back
- # Shortcut connection for feed-forward block
- shortcut = x
- x = self.norm2(x)
- x = self.ff(x)
- x = self.drop_resid(x)
- x = x + shortcut # Add the original input back
- return x
- class GPTModel(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
- self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
- self.drop_emb = nn.Dropout(cfg["drop_rate"])
- self.trf_blocks = nn.Sequential(
- *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
- self.final_norm = LayerNorm(cfg["emb_dim"])
- self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
- def forward(self, in_idx):
- batch_size, seq_len = in_idx.shape
- tok_embeds = self.tok_emb(in_idx)
- pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
- x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
- x = self.drop_emb(x)
- x = self.trf_blocks(x)
- x = self.final_norm(x)
- logits = self.out_head(x)
- return logits
- def generate_text_simple(model, idx, max_new_tokens, context_size):
- # idx is (B, T) array of indices in the current context
- for _ in range(max_new_tokens):
- # Crop current context if it exceeds the supported context size
- # E.g., if LLM supports only 5 tokens, and the context size is 10
- # then only the last 5 tokens are used as context
- idx_cond = idx[:, -context_size:]
- # Get the predictions
- with torch.no_grad():
- logits = model(idx_cond)
- # Focus only on the last time step
- # (batch, n_token, vocab_size) becomes (batch, vocab_size)
- logits = logits[:, -1, :]
- # Get the idx of the vocab entry with the highest logits value
- idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
- # Append sampled index to the running sequence
- idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
- return idx
- ######################
- # Bonus
- ######################
- class FeedForwardFast(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.layers = nn.Sequential(
- nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
- nn.GELU(approximate="tanh"),
- nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
- )
- def forward(self, x):
- return self.layers(x)
- class TransformerBlockFast(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.att = PyTorchMultiHeadAttention(
- d_in=cfg["emb_dim"],
- d_out=cfg["emb_dim"],
- num_heads=cfg["n_heads"],
- dropout=cfg["drop_rate"],
- qkv_bias=cfg["qkv_bias"])
- self.ff = FeedForwardFast(cfg)
- self.norm1 = nn.LayerNorm(cfg["emb_dim"])
- self.norm2 = nn.LayerNorm(cfg["emb_dim"])
- self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
- def forward(self, x):
- # Shortcut connection for attention block
- shortcut = x
- x = self.norm1(x)
- x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
- x = self.drop_shortcut(x)
- x = x + shortcut # Add the original input back
- # Shortcut connection for feed-forward block
- shortcut = x
- x = self.norm2(x)
- x = self.ff(x)
- x = self.drop_shortcut(x)
- x = x + shortcut # Add the original input back
- return x
- class GPTModelFast(nn.Module):
- """
- A faster variant of GPTModel optimized for training speed.
- This version is only marginally faster on CPU (~1.02x) but significantly
- faster on GPU (~2.05x) during training, thanks to optimized CUDA kernels
- and FlashAttention support.
- Key differences from the original GPTModel:
- 1. Uses PyTorch's built-in LayerNorm instead of a custom implementation.
- 2. Uses PyTorch's built-in GELU instead of a custom implementation.
- 3. Uses PyTorch's scaled_dot_product_attention instead of a custom MultiHeadAttention.
- 4. Automatically enables FlashAttention on compatible GPUs.
- """
- def __init__(self, cfg):
- super().__init__()
- self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
- self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
- self.drop_emb = nn.Dropout(cfg["drop_rate"])
- self.trf_blocks = nn.Sequential(
- *[TransformerBlockFast(cfg) for _ in range(cfg["n_layers"])])
- self.final_norm = nn.LayerNorm(cfg["emb_dim"])
- self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
- def forward(self, in_idx):
- batch_size, seq_len = in_idx.shape
- tok_embeds = self.tok_emb(in_idx)
- pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
- x = tok_embeds + pos_embeds
- x = self.drop_emb(x)
- x = self.trf_blocks(x)
- x = self.final_norm(x)
- logits = self.out_head(x)
- return logits
|