| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- import tiktoken
- import torch
- import torch.nn as nn
- from torch.utils.data import Dataset, DataLoader
- class GPTDatasetV1(Dataset):
- def __init__(self, txt, tokenizer, max_length, stride):
- self.tokenizer = tokenizer
- self.input_ids = []
- self.target_ids = []
- # Tokenize the entire text
- token_ids = tokenizer.encode(txt)
- # Use a sliding window to chunk the book into overlapping sequences of max_length
- for i in range(0, len(token_ids) - max_length, stride):
- input_chunk = token_ids[i:i + max_length]
- target_chunk = token_ids[i + 1: i + max_length + 1]
- self.input_ids.append(torch.tensor(input_chunk))
- self.target_ids.append(torch.tensor(target_chunk))
- def __len__(self):
- return len(self.input_ids)
- def __getitem__(self, idx):
- return self.input_ids[idx], self.target_ids[idx]
- def create_dataloader_v1(txt, batch_size=4, max_length=256,
- stride=128, shuffle=True, drop_last=True):
- # Initialize the tokenizer
- tokenizer = tiktoken.get_encoding("gpt2")
- # Create dataset
- dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
- # Create dataloader
- dataloader = DataLoader(
- dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
- return dataloader
- class MultiHeadAttention(nn.Module):
- def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
- super().__init__()
- assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
- self.d_out = d_out
- self.num_heads = num_heads
- self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
- self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
- self.dropout = nn.Dropout(dropout)
- self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
- def forward(self, x):
- b, num_tokens, d_in = x.shape
- keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
- queries = self.W_query(x)
- values = self.W_value(x)
- # We implicitly split the matrix by adding a `num_heads` dimension
- # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
- keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
- values = values.view(b, num_tokens, self.num_heads, self.head_dim)
- queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
- # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
- keys = keys.transpose(1, 2)
- queries = queries.transpose(1, 2)
- values = values.transpose(1, 2)
- # Compute scaled dot-product attention (aka self-attention) with a causal mask
- attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
- # Original mask truncated to the number of tokens and converted to boolean
- mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
- # Use the mask to fill attention scores
- attn_scores.masked_fill_(mask_bool, -torch.inf)
- attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
- attn_weights = self.dropout(attn_weights)
- # Shape: (b, num_tokens, num_heads, head_dim)
- context_vec = (attn_weights @ values).transpose(1, 2)
- # Combine heads, where self.d_out = self.num_heads * self.head_dim
- context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
- context_vec = self.out_proj(context_vec) # optional projection
- return context_vec
|