| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- # This file collects all the relevant code that we covered thus far
- # throughout Chapters 3-4.
- # This file can be run as a standalone script.
- import time
- import tiktoken
- import torch
- import torch.nn as nn
- #####################################
- # Chapter 3
- #####################################
- class MultiHeadAttention(nn.Module):
- def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
- super().__init__()
- assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
- self.d_out = d_out
- self.num_heads = num_heads
- self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
- self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
- self.dropout = nn.Dropout(dropout)
- self.register_buffer(
- "mask",
- torch.triu(torch.ones(context_length, context_length),diagonal=1),
- persistent=False
- )
- ####################################################
- # NEW
- self.register_buffer("cache_k", None, persistent=False)
- self.register_buffer("cache_v", None, persistent=False)
- ####################################################
- def forward(self, x, use_cache=False):
- b, num_tokens, d_in = x.shape
- keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out)
- values_new = self.W_value(x)
- queries = self.W_query(x)
- # We implicitly split the matrix by adding a `num_heads` dimension
- # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
- keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim)
- values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim)
- queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
- ####################################################
- # NEW
- if use_cache:
- if self.cache_k is None:
- self.cache_k, self.cache_v = keys_new, values_new
- else:
- self.cache_k = torch.cat([self.cache_k, keys_new], dim=1)
- self.cache_v = torch.cat([self.cache_v, values_new], dim=1)
- keys, values = self.cache_k, self.cache_v
- else:
- keys, values = keys_new, values_new
- ####################################################
- # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
- keys = keys.transpose(1, 2)
- queries = queries.transpose(1, 2)
- values = values.transpose(1, 2)
- # Compute scaled dot-product attention (aka self-attention) with a causal mask
- attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
- # Original mask truncated to the number of tokens and converted to boolean
- mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
- # Use the mask to fill attention scores
- attn_scores.masked_fill_(mask_bool, -torch.inf)
- attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
- attn_weights = self.dropout(attn_weights)
- # Shape: (b, num_tokens, num_heads, head_dim)
- context_vec = (attn_weights @ values).transpose(1, 2)
- # Combine heads, where self.d_out = self.num_heads * self.head_dim
- context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
- context_vec = self.out_proj(context_vec) # optional projection
- return context_vec
- ####################################################
- # NEW
- def reset_cache(self):
- self.cache_k, self.cache_v = None, None
- ####################################################
- #####################################
- # Chapter 4
- #####################################
- class LayerNorm(nn.Module):
- def __init__(self, emb_dim):
- super().__init__()
- self.eps = 1e-5
- self.scale = nn.Parameter(torch.ones(emb_dim))
- self.shift = nn.Parameter(torch.zeros(emb_dim))
- def forward(self, x):
- mean = x.mean(dim=-1, keepdim=True)
- var = x.var(dim=-1, keepdim=True, unbiased=False)
- norm_x = (x - mean) / torch.sqrt(var + self.eps)
- return self.scale * norm_x + self.shift
- class GELU(nn.Module):
- def __init__(self):
- super().__init__()
- def forward(self, x):
- return 0.5 * x * (1 + torch.tanh(
- torch.sqrt(torch.tensor(2.0 / torch.pi)) *
- (x + 0.044715 * torch.pow(x, 3))
- ))
- class FeedForward(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.layers = nn.Sequential(
- nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
- GELU(),
- nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
- )
- def forward(self, x):
- return self.layers(x)
- class TransformerBlock(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.att = MultiHeadAttention(
- d_in=cfg["emb_dim"],
- d_out=cfg["emb_dim"],
- context_length=cfg["context_length"],
- num_heads=cfg["n_heads"],
- dropout=cfg["drop_rate"],
- qkv_bias=cfg["qkv_bias"])
- self.ff = FeedForward(cfg)
- self.norm1 = LayerNorm(cfg["emb_dim"])
- self.norm2 = LayerNorm(cfg["emb_dim"])
- self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
- def forward(self, x, use_cache=False):
- # Shortcut connection for attention block
- shortcut = x
- x = self.norm1(x)
- # x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
- ####################################################
- # NEW
- x = self.att(x, use_cache=use_cache)
- ####################################################
- x = self.drop_shortcut(x)
- x = x + shortcut # Add the original input back
- # Shortcut connection for feed-forward block
- shortcut = x
- x = self.norm2(x)
- x = self.ff(x)
- x = self.drop_shortcut(x)
- x = x + shortcut # Add the original input back
- return x
- class GPTModel(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
- self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
- self.drop_emb = nn.Dropout(cfg["drop_rate"])
- # self.trf_blocks = nn.Sequential(
- # *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
- ####################################################
- # NEW
- self.trf_blocks = nn.ModuleList(
- [TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
- self.current_pos = 0
- ####################################################
- self.final_norm = LayerNorm(cfg["emb_dim"])
- self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
- def forward(self, in_idx, use_cache=False):
- batch_size, seq_len = in_idx.shape
- tok_embeds = self.tok_emb(in_idx)
- # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
- ####################################################
- # NEW
- if use_cache:
- pos_ids = torch.arange(self.current_pos, self.current_pos + seq_len, device=in_idx.device, dtype=torch.long)
- self.current_pos += seq_len
- else:
- pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long)
- pos_embeds = self.pos_emb(pos_ids).unsqueeze(0)
- ####################################################
- x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
- x = self.drop_emb(x)
- # x = self.trf_blocks(x)
- ####################################################
- # NEW
- for blk in self.trf_blocks:
- x = blk(x, use_cache=use_cache)
- ####################################################
- x = self.final_norm(x)
- logits = self.out_head(x)
- return logits
- ####################################################
- # NEW
- def reset_kv_cache(self):
- for blk in self.trf_blocks:
- blk.att.reset_cache()
- self.current_pos = 0
- ####################################################
- def generate_text_simple(model, idx, max_new_tokens, context_size):
- # idx is (B, T) array of indices in the current context
- for _ in range(max_new_tokens):
- # Crop current context if it exceeds the supported context size
- # E.g., if LLM supports only 5 tokens, and the context size is 10
- # then only the last 5 tokens are used as context
- idx_cond = idx[:, -context_size:]
- # Get the predictions
- with torch.no_grad():
- logits = model(idx_cond)
- # Focus only on the last time step
- # (batch, n_token, vocab_size) becomes (batch, vocab_size)
- logits = logits[:, -1, :]
- # Get the idx of the vocab entry with the highest logits value
- idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
- # Append sampled index to the running sequence
- idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
- return idx
- ####################################################
- # NEW
- def generate_text_simple_cached(model, idx, max_new_tokens):
- model.eval()
- model.reset_kv_cache()
- # Init cache with full prompt
- logits = model(idx, use_cache=True)
- for _ in range(max_new_tokens):
- last_logits = logits[:, -1]
- next_idx = last_logits.argmax(dim=-1, keepdim=True)
- idx = torch.cat([idx, next_idx], dim=1)
- logits = model(next_idx, use_cache=True)
- return idx
- ####################################################
- def main():
- GPT_CONFIG_124M = {
- "vocab_size": 50257, # Vocabulary size
- "context_length": 1024, # Context length
- "emb_dim": 768, # Embedding dimension
- "n_heads": 12, # Number of attention heads
- "n_layers": 12, # Number of layers
- "drop_rate": 0.1, # Dropout rate
- "qkv_bias": False # Query-Key-Value bias
- }
- torch.manual_seed(123)
- model = GPTModel(GPT_CONFIG_124M)
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- model.to(device)
- model.eval() # disable dropout
- start_context = "Hello, I am"
- tokenizer = tiktoken.get_encoding("gpt2")
- encoded = tokenizer.encode(start_context)
- encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0)
- print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
- print("\nInput text:", start_context)
- print("Encoded input text:", encoded)
- print("encoded_tensor.shape:", encoded_tensor.shape)
- if torch.cuda.is_available():
- torch.cuda.synchronize()
- start = time.time()
- # token_ids = generate_text_simple(
- # model=model,
- # idx=encoded_tensor,
- # max_new_tokens=200,
- # context_size=GPT_CONFIG_124M["context_length"]
- # )
- ####################################################
- # NEW
- token_ids = generate_text_simple_cached(
- model=model,
- idx=encoded_tensor,
- max_new_tokens=200,
- )
- ####################################################
- if torch.cuda.is_available():
- torch.cuda.synchronize()
- total_time = time.time() - start
- decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist())
- print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
- print("\nOutput:", token_ids)
- print("Output length:", len(token_ids[0]))
- print("Output text:", decoded_text)
- print(f"\nTime: {total_time:.2f} sec")
- print(f"{int(len(token_ids[0])/total_time)} tokens/sec")
- if torch.cuda.is_available():
- max_mem_bytes = torch.cuda.max_memory_allocated()
- max_mem_gb = max_mem_bytes / (1024 ** 3)
- print(f"Max memory allocated: {max_mem_gb:.2f} GB")
- if __name__ == "__main__":
- main()
|