Переглянути джерело

Fix BPE bonus materials (#561)

* Fix BPE bonus materials

* fix bpe implementation

* update

* Add 'Hello, world. Is this-- a test?' test case

* update link to test file

* update path handling

* update path handling

* fix pytest paths
Sebastian Raschka 8 місяців тому
батько
коміт
f63f04d8d5

+ 6 - 0
.github/workflows/basic-tests-linux-uv.yml

@@ -60,3 +60,9 @@ jobs:
           pytest --ruff --nbval ch02/01_main-chapter-code/dataloader.ipynb
           pytest --ruff --nbval ch03/01_main-chapter-code/multihead-attention.ipynb
           pytest --ruff --nbval ch02/04_bonus_dataloader-intuition/dataloader-intuition.ipynb
+
+      - name: Test Selected Bonus Materials
+        shell: bash
+        run: |
+          source .venv/bin/activate
+          pytest ch02/05_bpe-from-scratch/tests/tests.py

+ 7 - 1
.gitignore

@@ -1,3 +1,4 @@
+
 # Configs and keys
 ch05/07_gpt_to_llama/config.json
 ch07/02_dataset-utilities/config.json
@@ -63,6 +64,8 @@ ch07/01_main-chapter-code/Smalltestmodel-sft-standalone.pth
 ch07/01_main-chapter-code/gpt2/
 
 # Datasets
+the-verdict.txt
+
 appendix-E/01_main-chapter-code/sms_spam_collection.zip
 appendix-E/01_main-chapter-code/sms_spam_collection
 appendix-E/01_main-chapter-code/train.csv
@@ -70,6 +73,7 @@ appendix-E/01_main-chapter-code/test.csv
 appendix-E/01_main-chapter-code/validation.csv
 
 ch02/01_main-chapter-code/number-data.txt
+ch02/05_bpe-from-scratch/the-verdict.txt
 
 ch05/03_bonus_pretraining_on_gutenberg/gutenberg
 ch05/03_bonus_pretraining_on_gutenberg/gutenberg_preprocessed
@@ -107,7 +111,9 @@ ch02/05_bpe-from-scratch/bpe_merges.txt
 ch02/05_bpe-from-scratch/encoder.json
 ch02/05_bpe-from-scratch/vocab.bpe
 ch02/05_bpe-from-scratch/vocab.json
-
+encoder.json
+vocab.bpe
+vocab.json
 
 # Other
 ch0?/0?_user_interface/.chainlit/

+ 22 - 14
ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb

@@ -67,7 +67,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "tiktoken version: 0.7.0\n"
+      "tiktoken version: 0.9.0\n"
      ]
     }
    ],
@@ -180,8 +180,8 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "Fetching encoder.json: 1.04Mit [00:00, 4.13Mit/s]                                                   \n",
-      "Fetching vocab.bpe: 457kit [00:00, 2.56Mit/s]                                                       \n"
+      "Fetching encoder.json: 1.04Mit [00:00, 3.69Mit/s]                                                   \n",
+      "Fetching vocab.bpe: 457kit [00:00, 2.53Mit/s]                                                       \n"
      ]
     }
    ],
@@ -256,10 +256,18 @@
    "id": "e9077bf4-f91f-42ad-ab76-f3d89128510e",
    "metadata": {},
    "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/Users/sebastian/Developer/LLMs-from-scratch/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+      "  from .autonotebook import tqdm as notebook_tqdm\n"
+     ]
+    },
     {
      "data": {
       "text/plain": [
-       "'4.48.0'"
+       "'4.49.0'"
       ]
      },
      "execution_count": 12,
@@ -423,7 +431,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[1544, 18798, 11, 995, 13, 1148, 256, 5303, 82, 438, 257, 1332, 30]\n"
+      "[15496, 11, 995, 13, 1148, 428, 438, 257, 1332, 30]\n"
      ]
     }
    ],
@@ -451,7 +459,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "with open('../01_main-chapter-code/the-verdict.txt', 'r', encoding='utf-8') as f:\n",
+    "with open(\"../01_main-chapter-code/the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
     "    raw_text = f.read()"
    ]
   },
@@ -473,7 +481,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "3.39 ms ± 21.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+      "3.84 ms ± 9.83 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
      ]
     }
    ],
@@ -499,7 +507,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "1.08 ms ± 5.99 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
+      "901 μs ± 6.27 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
      ]
     }
    ],
@@ -532,7 +540,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "10.2 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+      "11 ms ± 94.4 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
      ]
     }
    ],
@@ -550,7 +558,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "10 ms ± 36.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+      "10.8 ms ± 180 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
      ]
     }
    ],
@@ -575,7 +583,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "3.79 ms ± 48.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+      "3.66 ms ± 3.67 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
      ]
     }
    ],
@@ -593,7 +601,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "3.83 ms ± 58.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+      "3.77 ms ± 49.3 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
      ]
     }
    ],
@@ -619,7 +627,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "1.59 ms ± 11.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
+      "9.37 ms ± 50.3 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
      ]
     }
    ],
@@ -644,7 +652,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.4"
+   "version": "3.10.16"
   }
  },
  "nbformat": 4,

+ 123 - 70
ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb

@@ -382,7 +382,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "id": "3e4a15ec-2667-4f56-b7c1-34e8071b621d",
    "metadata": {},
    "outputs": [],
@@ -401,6 +401,10 @@
     "        # Dictionary of BPE merges: {(token_id1, token_id2): merged_token_id}\n",
     "        self.bpe_merges = {}\n",
     "\n",
+    "        # For the official OpenAI GPT-2 merges, use a rank dict:\n",
+    "        #  of form {(string_A, string_B): rank}, where lower rank = higher priority\n",
+    "        self.bpe_ranks = {}\n",
+    "\n",
     "    def train(self, text, vocab_size, allowed_special={\"<|endoftext|>\"}):\n",
     "        \"\"\"\n",
     "        Train the BPE tokenizer from scratch.\n",
@@ -411,7 +415,7 @@
     "            allowed_special (set): A set of special tokens to include.\n",
     "        \"\"\"\n",
     "\n",
-    "        # Preprocess: Replace spaces with 'Ġ'\n",
+    "        # Preprocess: Replace spaces with \"Ġ\"\n",
     "        # Note that Ġ is a particularity of the GPT-2 BPE implementation\n",
     "        # E.g., \"Hello world\" might be tokenized as [\"Hello\", \"Ġworld\"]\n",
     "        # (GPT-4 BPE would tokenize it as [\"Hello\", \" world\"])\n",
@@ -423,18 +427,16 @@
     "                processed_text.append(char)\n",
     "        processed_text = \"\".join(processed_text)\n",
     "\n",
-    "        # Initialize vocab with unique characters, including 'Ġ' if present\n",
+    "        # Initialize vocab with unique characters, including \"Ġ\" if present\n",
     "        # Start with the first 256 ASCII characters\n",
     "        unique_chars = [chr(i) for i in range(256)]\n",
-    "\n",
-    "        # Extend unique_chars with characters from processed_text that are not already included\n",
-    "        unique_chars.extend(char for char in sorted(set(processed_text)) if char not in unique_chars)\n",
-    "\n",
-    "        # Optionally, ensure 'Ġ' is included if it is relevant to your text processing\n",
+    "        unique_chars.extend(\n",
+    "            char for char in sorted(set(processed_text))\n",
+    "            if char not in unique_chars\n",
+    "        )\n",
     "        if \"Ġ\" not in unique_chars:\n",
     "            unique_chars.append(\"Ġ\")\n",
     "\n",
-    "        # Now create the vocab and inverse vocab dictionaries\n",
     "        self.vocab = {i: char for i, char in enumerate(unique_chars)}\n",
     "        self.inverse_vocab = {char: i for i, char in self.vocab.items()}\n",
     "\n",
@@ -452,7 +454,7 @@
     "        # BPE steps 1-3: Repeatedly find and replace frequent pairs\n",
     "        for new_id in range(len(self.vocab), vocab_size):\n",
     "            pair_id = self.find_freq_pair(token_ids, mode=\"most\")\n",
-    "            if pair_id is None:  # No more pairs to merge. Stopping training.\n",
+    "            if pair_id is None:\n",
     "                break\n",
     "            token_ids = self.replace_pair(token_ids, pair_id, new_id)\n",
     "            self.bpe_merges[pair_id] = new_id\n",
@@ -492,29 +494,24 @@
     "            self.inverse_vocab[\"\\n\"] = newline_token_id\n",
     "            self.vocab[newline_token_id] = \"\\n\"\n",
     "\n",
-    "        # Load BPE merges\n",
+    "        # Load GPT-2 merges and store them with an assigned \"rank\"\n",
+    "        self.bpe_ranks = {}  # reset ranks\n",
     "        with open(bpe_merges_path, \"r\", encoding=\"utf-8\") as file:\n",
     "            lines = file.readlines()\n",
-    "            # Skip header line if present\n",
     "            if lines and lines[0].startswith(\"#\"):\n",
     "                lines = lines[1:]\n",
     "\n",
+    "            rank = 0\n",
     "            for line in lines:\n",
     "                pair = tuple(line.strip().split())\n",
     "                if len(pair) == 2:\n",
     "                    token1, token2 = pair\n",
+    "                    # If token1 or token2 not in vocab, skip\n",
     "                    if token1 in self.inverse_vocab and token2 in self.inverse_vocab:\n",
-    "                        token_id1 = self.inverse_vocab[token1]\n",
-    "                        token_id2 = self.inverse_vocab[token2]\n",
-    "                        merged_token = token1 + token2\n",
-    "                        if merged_token in self.inverse_vocab:\n",
-    "                            merged_token_id = self.inverse_vocab[merged_token]\n",
-    "                            self.bpe_merges[(token_id1, token_id2)] = merged_token_id\n",
-    "                        # print(f\"Loaded merge: '{token1}' + '{token2}' -> '{merged_token}' (ID: {merged_token_id})\")\n",
-    "                        else:\n",
-    "                            print(f\"Merged token '{merged_token}' not found in vocab. Skipping.\")\n",
+    "                        self.bpe_ranks[(token1, token2)] = rank\n",
+    "                        rank += 1\n",
     "                    else:\n",
-    "                        print(f\"Skipping pair {pair} as one of the tokens is not in the vocabulary.\")\n",
+    "                        print(f\"Skipping pair {pair} as one token is not in the vocabulary.\")\n",
     "\n",
     "    def encode(self, text):\n",
     "        \"\"\"\n",
@@ -540,7 +537,7 @@
     "                    else:\n",
     "                        tokens.append(word)\n",
     "                else:\n",
-    "                    # Prefix words in the middle of a line with 'Ġ'\n",
+    "                    # Prefix words in the middle of a line with \"Ġ\"\n",
     "                    tokens.append(\"Ġ\" + word)\n",
     "\n",
     "        token_ids = []\n",
@@ -571,28 +568,74 @@
     "            missing_chars = [char for char, tid in zip(token, token_ids) if tid is None]\n",
     "            raise ValueError(f\"Characters not found in vocab: {missing_chars}\")\n",
     "\n",
-    "        can_merge = True\n",
-    "        while can_merge and len(token_ids) > 1:\n",
-    "            can_merge = False\n",
-    "            new_tokens = []\n",
+    "        # If we haven't loaded OpenAI's GPT-2 merges, use my approach\n",
+    "        if not self.bpe_ranks:\n",
+    "            can_merge = True\n",
+    "            while can_merge and len(token_ids) > 1:\n",
+    "                can_merge = False\n",
+    "                new_tokens = []\n",
+    "                i = 0\n",
+    "                while i < len(token_ids) - 1:\n",
+    "                    pair = (token_ids[i], token_ids[i + 1])\n",
+    "                    if pair in self.bpe_merges:\n",
+    "                        merged_token_id = self.bpe_merges[pair]\n",
+    "                        new_tokens.append(merged_token_id)\n",
+    "                        # Uncomment for educational purposes:\n",
+    "                        # print(f\"Merged pair {pair} -> {merged_token_id} ('{self.vocab[merged_token_id]}')\")\n",
+    "                        i += 2  # Skip the next token as it's merged\n",
+    "                        can_merge = True\n",
+    "                    else:\n",
+    "                        new_tokens.append(token_ids[i])\n",
+    "                        i += 1\n",
+    "                if i < len(token_ids):\n",
+    "                    new_tokens.append(token_ids[i])\n",
+    "                token_ids = new_tokens\n",
+    "            return token_ids\n",
+    "\n",
+    "        # Otherwise, do GPT-2-style merging with the ranks:\n",
+    "        # 1) Convert token_ids back to string \"symbols\" for each ID\n",
+    "        symbols = [self.vocab[id_num] for id_num in token_ids]\n",
+    "\n",
+    "        # Repeatedly merge all occurrences of the lowest-rank pair\n",
+    "        while True:\n",
+    "            # Collect all adjacent pairs\n",
+    "            pairs = set(zip(symbols, symbols[1:]))\n",
+    "            if not pairs:\n",
+    "                break\n",
+    "\n",
+    "            # Find the pair with the best (lowest) rank\n",
+    "            min_rank = 1_000_000_000\n",
+    "            bigram = None\n",
+    "            for p in pairs:\n",
+    "                r = self.bpe_ranks.get(p, 1_000_000_000)\n",
+    "                if r < min_rank:\n",
+    "                    min_rank = r\n",
+    "                    bigram = p\n",
+    "\n",
+    "            # If no valid ranked pair is present, we're done\n",
+    "            if bigram is None or bigram not in self.bpe_ranks:\n",
+    "                break\n",
+    "\n",
+    "            # Merge all occurrences of that pair\n",
+    "            first, second = bigram\n",
+    "            new_symbols = []\n",
     "            i = 0\n",
-    "            while i < len(token_ids) - 1:\n",
-    "                pair = (token_ids[i], token_ids[i + 1])\n",
-    "                if pair in self.bpe_merges:\n",
-    "                    merged_token_id = self.bpe_merges[pair]\n",
-    "                    new_tokens.append(merged_token_id)\n",
-    "                    # Uncomment for educational purposes:\n",
-    "                    # print(f\"Merged pair {pair} -> {merged_token_id} ('{self.vocab[merged_token_id]}')\")\n",
-    "                    i += 2  # Skip the next token as it's merged\n",
-    "                    can_merge = True\n",
+    "            while i < len(symbols):\n",
+    "                # If we see (first, second) at position i, merge them\n",
+    "                if i < len(symbols) - 1 and symbols[i] == first and symbols[i+1] == second:\n",
+    "                    new_symbols.append(first + second)  # merged symbol\n",
+    "                    i += 2\n",
     "                else:\n",
-    "                    new_tokens.append(token_ids[i])\n",
+    "                    new_symbols.append(symbols[i])\n",
     "                    i += 1\n",
-    "            if i < len(token_ids):\n",
-    "                new_tokens.append(token_ids[i])\n",
-    "            token_ids = new_tokens\n",
+    "            symbols = new_symbols\n",
     "\n",
-    "        return token_ids\n",
+    "            if len(symbols) == 1:\n",
+    "                break\n",
+    "\n",
+    "        # Finally, convert merged symbols back to IDs\n",
+    "        merged_ids = [self.inverse_vocab[sym] for sym in symbols]\n",
+    "        return merged_ids\n",
     "\n",
     "    def decode(self, token_ids):\n",
     "        \"\"\"\n",
@@ -738,22 +781,49 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
-   "id": "4d197cad-ed10-4a42-b01c-a763859781fb",
+   "execution_count": 25,
+   "id": "51872c08-e01b-40c3-a8a0-e8d6a773e3df",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "the-verdict.txt already exists in ./the-verdict.txt\n"
+     ]
+    }
+   ],
    "source": [
     "import os\n",
     "import urllib.request\n",
     "\n",
-    "if not os.path.exists(\"../01_main-chapter-code/the-verdict.txt\"):\n",
-    "    url = (\"https://raw.githubusercontent.com/rasbt/\"\n",
-    "           \"LLMs-from-scratch/main/ch02/01_main-chapter-code/\"\n",
-    "           \"the-verdict.txt\")\n",
-    "    file_path = \"../01_main-chapter-code/the-verdict.txt\"\n",
-    "    urllib.request.urlretrieve(url, file_path)\n",
+    "def download_file_if_absent(url, filename, search_dirs):\n",
+    "    for directory in search_dirs:\n",
+    "        file_path = os.path.join(directory, filename)\n",
+    "        if os.path.exists(file_path):\n",
+    "            print(f\"{filename} already exists in {file_path}\")\n",
+    "            return file_path\n",
+    "\n",
+    "    target_path = os.path.join(search_dirs[0], filename)\n",
+    "    try:\n",
+    "        with urllib.request.urlopen(url) as response, open(target_path, \"wb\") as out_file:\n",
+    "            out_file.write(response.read())\n",
+    "        print(f\"Downloaded {filename} to {target_path}\")\n",
+    "    except Exception as e:\n",
+    "        print(f\"Failed to download {filename}. Error: {e}\")\n",
+    "    return target_path\n",
     "\n",
-    "with open(\"../01_main-chapter-code/the-verdict.txt\", \"r\", encoding=\"utf-8\") as f: # added ../01_main-chapter-code/\n",
+    "verdict_path = download_file_if_absent(\n",
+    "    url=(\n",
+    "         \"https://raw.githubusercontent.com/rasbt/\"\n",
+    "         \"LLMs-from-scratch/main/ch02/01_main-chapter-code/\"\n",
+    "         \"the-verdict.txt\"\n",
+    "    ),\n",
+    "    filename=\"the-verdict.txt\",\n",
+    "    search_dirs=\".\"\n",
+    ")\n",
+    "\n",
+    "with open(verdict_path, \"r\", encoding=\"utf-8\") as f: # added ../01_main-chapter-code/\n",
     "    text = f.read()"
    ]
   },
@@ -1168,24 +1238,7 @@
     }
    ],
    "source": [
-    "import os\n",
-    "import urllib.request\n",
-    "\n",
-    "def download_file_if_absent(url, filename, search_dirs):\n",
-    "    for directory in search_dirs:\n",
-    "        file_path = os.path.join(directory, filename)\n",
-    "        if os.path.exists(file_path):\n",
-    "            print(f\"{filename} already exists in {file_path}\")\n",
-    "            return file_path\n",
-    "\n",
-    "    target_path = os.path.join(search_dirs[0], filename)\n",
-    "    try:\n",
-    "        with urllib.request.urlopen(url) as response, open(target_path, \"wb\") as out_file:\n",
-    "            out_file.write(response.read())\n",
-    "        print(f\"Downloaded {filename} to {target_path}\")\n",
-    "    except Exception as e:\n",
-    "        print(f\"Failed to download {filename}. Error: {e}\")\n",
-    "    return target_path\n",
+    "# Download files if not already present in this directory\n",
     "\n",
     "# Define the directories to search and the files to download\n",
     "search_directories = [\".\", \"../02_bonus_bytepair-encoder/gpt2_model/\"]\n",
@@ -1351,7 +1404,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.6"
+   "version": "3.10.16"
   }
  },
  "nbformat": 4,

+ 147 - 0
ch02/05_bpe-from-scratch/tests/tests.py

@@ -0,0 +1,147 @@
+import os
+import sys
+import io
+import nbformat
+import types
+import pytest
+
+import tiktoken
+
+
+def import_definitions_from_notebook(fullname, names):
+    """Loads function definitions from a Jupyter notebook file into a module."""
+    path = os.path.join(os.path.dirname(__file__), "..", fullname + ".ipynb")
+    path = os.path.normpath(path)
+
+    if not os.path.exists(path):
+        raise FileNotFoundError(f"Notebook file not found at: {path}")
+
+    with io.open(path, "r", encoding="utf-8") as f:
+        nb = nbformat.read(f, as_version=4)
+
+    mod = types.ModuleType(fullname)
+    sys.modules[fullname] = mod
+
+    # Execute all code cells to capture dependencies
+    for cell in nb.cells:
+        if cell.cell_type == "code":
+            exec(cell.source, mod.__dict__)
+
+    # Ensure required names are in module
+    missing_names = [name for name in names if name not in mod.__dict__]
+    if missing_names:
+        raise ImportError(f"Missing definitions in notebook: {missing_names}")
+
+    return mod
+
+
+@pytest.fixture(scope="module")
+def imported_module():
+    fullname = "bpe-from-scratch"
+    names = ["BPETokenizerSimple", "download_file_if_absent"]
+    return import_definitions_from_notebook(fullname, names)
+
+
+@pytest.fixture(scope="module")
+def gpt2_files(imported_module):
+    """Fixture to handle downloading GPT-2 files."""
+    download_file_if_absent = getattr(imported_module, "download_file_if_absent", None)
+
+    search_directories = [".", "../02_bonus_bytepair-encoder/gpt2_model/"]
+    files_to_download = {
+        "https://openaipublic.blob.core.windows.net/gpt-2/models/124M/vocab.bpe": "vocab.bpe",
+        "https://openaipublic.blob.core.windows.net/gpt-2/models/124M/encoder.json": "encoder.json"
+    }
+    paths = {filename: download_file_if_absent(url, filename, search_directories)
+             for url, filename in files_to_download.items()}
+
+    return paths
+
+
+def test_tokenizer_training(imported_module, gpt2_files):
+    BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
+    download_file_if_absent = getattr(imported_module, "download_file_if_absent", None)
+
+    tokenizer = BPETokenizerSimple()
+    verdict_path = download_file_if_absent(
+        url=(
+            "https://raw.githubusercontent.com/rasbt/"
+            "LLMs-from-scratch/main/ch02/01_main-chapter-code/"
+            "the-verdict.txt"
+        ),
+        filename="the-verdict.txt",
+        search_dirs="."
+    )
+
+    with open(verdict_path, "r", encoding="utf-8") as f: # added ../01_main-chapter-code/
+        text = f.read()
+
+    tokenizer.train(text, vocab_size=1000, allowed_special={"<|endoftext|>"})
+    assert len(tokenizer.vocab) == 1000, "Tokenizer vocabulary size mismatch."
+    assert len(tokenizer.bpe_merges) == 742, "Tokenizer BPE merges count mismatch."
+
+    input_text = "Jack embraced beauty through art and life."
+    token_ids = tokenizer.encode(input_text)
+    assert token_ids == [424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46], "Token IDs do not match expected output."
+
+    assert tokenizer.decode(token_ids) == input_text, "Decoded text does not match the original input."
+
+    tokenizer.save_vocab_and_merges(vocab_path="vocab.json", bpe_merges_path="bpe_merges.txt")
+    tokenizer2 = BPETokenizerSimple()
+    tokenizer2.load_vocab_and_merges(vocab_path="vocab.json", bpe_merges_path="bpe_merges.txt")
+    assert tokenizer2.decode(token_ids) == input_text, "Decoded text mismatch after reloading tokenizer."
+
+
+def test_gpt2_tokenizer_openai_simple(imported_module, gpt2_files):
+    BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
+
+    tokenizer_gpt2 = BPETokenizerSimple()
+    tokenizer_gpt2.load_vocab_and_merges_from_openai(
+        vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
+    )
+
+    assert len(tokenizer_gpt2.vocab) == 50257, "GPT-2 tokenizer vocabulary size mismatch."
+
+    input_text = "This is some text"
+    token_ids = tokenizer_gpt2.encode(input_text)
+    assert token_ids == [1212, 318, 617, 2420], "Tokenized output does not match expected GPT-2 encoding."
+
+
+def test_gpt2_tokenizer_openai_edgecases(imported_module, gpt2_files):
+    BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
+
+    tokenizer_gpt2 = BPETokenizerSimple()
+    tokenizer_gpt2.load_vocab_and_merges_from_openai(
+        vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
+    )
+    tik_tokenizer = tiktoken.get_encoding("gpt2")
+
+    test_cases = [
+        ("Hello,", [15496, 11]),
+        ("Implementations", [3546, 26908, 602]),
+        ("asdf asdfasdf a!!, @aba 9asdf90asdfk", [292, 7568, 355, 7568, 292, 7568, 257, 3228, 11, 2488, 15498, 860, 292, 7568, 3829, 292, 7568, 74]),
+        ("Hello, world. Is this-- a test?", [15496, 11, 995, 13, 1148, 428, 438, 257, 1332, 30])
+    ]
+
+    errors = []
+
+    for input_text, expected_tokens in test_cases:
+        tik_tokens = tik_tokenizer.encode(input_text)
+        gpt2_tokens = tokenizer_gpt2.encode(input_text)
+
+        print(f"Text: {input_text}")
+        print(f"Expected Tokens: {expected_tokens}")
+        print(f"tiktoken Output: {tik_tokens}")
+        print(f"BPETokenizerSimple Output: {gpt2_tokens}")
+        print("-" * 40)
+
+        if tik_tokens != expected_tokens:
+            errors.append(f"Tiktokenized output does not match expected GPT-2 encoding for '{input_text}'.\n"
+                          f"Expected: {expected_tokens}, Got: {tik_tokens}")
+
+        if gpt2_tokens != expected_tokens:
+            errors.append(f"Tokenized output does not match expected GPT-2 encoding for '{input_text}'.\n"
+                          f"Expected: {expected_tokens}, Got: {gpt2_tokens}")
+
+    if errors:
+        pytest.fail("\n".join(errors))