|
|
@@ -0,0 +1,328 @@
|
|
|
+{
|
|
|
+ "cells": [
|
|
|
+ {
|
|
|
+ "cell_type": "markdown",
|
|
|
+ "id": "ab88d307-61ba-45ef-89bc-e3569443dfca",
|
|
|
+ "metadata": {},
|
|
|
+ "source": [
|
|
|
+ "# Chapter 2 Exercise solutions"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "markdown",
|
|
|
+ "id": "6f678e62-7bcb-4405-86ae-dce94f494303",
|
|
|
+ "metadata": {},
|
|
|
+ "source": [
|
|
|
+ "# Exercise 2.1"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 1,
|
|
|
+ "id": "7614337f-f639-42c9-a99b-d33f74fa8a03",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "import tiktoken\n",
|
|
|
+ "\n",
|
|
|
+ "tokenizer = tiktoken.get_encoding(\"gpt2\")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 3,
|
|
|
+ "id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "[33901]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 3,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.encode(\"Ak\")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 4,
|
|
|
+ "id": "d3664332-e6bb-447e-8b96-203aafde8b24",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "[86]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 4,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.encode(\"w\")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 5,
|
|
|
+ "id": "2773c09d-c136-4372-a2be-04b58d292842",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "[343]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 5,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.encode(\"ir\")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 6,
|
|
|
+ "id": "8a6abd32-1e0a-4038-9dd2-673f47bcdeb5",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "[86]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 6,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.encode(\"w\")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 7,
|
|
|
+ "id": "26ae940a-9841-4e27-a1df-b83fc8a488b3",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "[220]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 7,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.encode(\" \")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 8,
|
|
|
+ "id": "a606c39a-6747-4cd8-bb38-e3183f80908d",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "[959]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 8,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.encode(\"ier\")"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 9,
|
|
|
+ "id": "47c7268d-8fdc-4957-bc68-5be6113f45a7",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "'Akwirw ier'"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 9,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "tokenizer.decode([33901, 86, 343, 86, 220, 959])"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "markdown",
|
|
|
+ "id": "29e5034a-95ed-46d8-9972-589354dc9fd4",
|
|
|
+ "metadata": {},
|
|
|
+ "source": [
|
|
|
+ "# Exercise 2.2"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 18,
|
|
|
+ "id": "4d50af16-937b-49e0-8ffd-42d30cbb41c9",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "import tiktoken\n",
|
|
|
+ "import torch\n",
|
|
|
+ "from torch.utils.data import Dataset, DataLoader\n",
|
|
|
+ "\n",
|
|
|
+ "\n",
|
|
|
+ "class GPTDatasetV1(Dataset):\n",
|
|
|
+ " def __init__(self, txt, tokenizer, max_length, stride):\n",
|
|
|
+ " self.tokenizer = tokenizer\n",
|
|
|
+ " self.input_ids = []\n",
|
|
|
+ " self.target_ids = []\n",
|
|
|
+ "\n",
|
|
|
+ " # Tokenize the entire text\n",
|
|
|
+ " token_ids = tokenizer.encode(txt)\n",
|
|
|
+ "\n",
|
|
|
+ " # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
|
|
|
+ " for i in range(0, len(token_ids) - max_length, stride):\n",
|
|
|
+ " input_chunk = token_ids[i:i + max_length]\n",
|
|
|
+ " target_chunk = token_ids[i + 1: i + max_length + 1]\n",
|
|
|
+ " self.input_ids.append(torch.tensor(input_chunk))\n",
|
|
|
+ " self.target_ids.append(torch.tensor(target_chunk))\n",
|
|
|
+ "\n",
|
|
|
+ " def __len__(self):\n",
|
|
|
+ " return len(self.input_ids)\n",
|
|
|
+ "\n",
|
|
|
+ " def __getitem__(self, idx):\n",
|
|
|
+ " return self.input_ids[idx], self.target_ids[idx]\n",
|
|
|
+ "\n",
|
|
|
+ "\n",
|
|
|
+ "def create_dataloader(txt, batch_size=4, max_length=256, stride=128):\n",
|
|
|
+ " # Initialize the tokenizer\n",
|
|
|
+ " tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
|
|
+ "\n",
|
|
|
+ " # Create dataset\n",
|
|
|
+ " dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
|
|
|
+ "\n",
|
|
|
+ " # Create dataloader\n",
|
|
|
+ " dataloader = DataLoader(dataset, batch_size=batch_size)\n",
|
|
|
+ "\n",
|
|
|
+ " return dataloader\n",
|
|
|
+ "\n",
|
|
|
+ "\n",
|
|
|
+ "with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
|
|
+ " raw_text = f.read()\n",
|
|
|
+ "\n",
|
|
|
+ "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
|
|
+ "encoded_text = tokenizer.encode(raw_text)\n",
|
|
|
+ "\n",
|
|
|
+ "vocab_size = 50257\n",
|
|
|
+ "output_dim = 256\n",
|
|
|
+ "token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
|
|
|
+ "pos_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 19,
|
|
|
+ "id": "0128eefa-d7c8-4f76-9851-566dfa7c3745",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "tensor([[ 40, 367],\n",
|
|
|
+ " [2885, 1464],\n",
|
|
|
+ " [1807, 3619],\n",
|
|
|
+ " [ 402, 271]])"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 19,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "dataloader = create_dataloader(raw_text, batch_size=4, max_length=2, stride=2)\n",
|
|
|
+ "\n",
|
|
|
+ "for batch in dataloader:\n",
|
|
|
+ " x, y = batch\n",
|
|
|
+ " break\n",
|
|
|
+ "\n",
|
|
|
+ "x"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 20,
|
|
|
+ "id": "ff5c1e90-c6de-4a87-adf6-7e19f603291c",
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "tensor([[ 40, 367, 2885, 1464, 1807, 3619, 402, 271],\n",
|
|
|
+ " [ 2885, 1464, 1807, 3619, 402, 271, 10899, 2138],\n",
|
|
|
+ " [ 1807, 3619, 402, 271, 10899, 2138, 257, 7026],\n",
|
|
|
+ " [ 402, 271, 10899, 2138, 257, 7026, 15632, 438]])"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 20,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "dataloader = create_dataloader(raw_text, batch_size=4, max_length=8, stride=2)\n",
|
|
|
+ "\n",
|
|
|
+ "for batch in dataloader:\n",
|
|
|
+ " x, y = batch\n",
|
|
|
+ " break\n",
|
|
|
+ "\n",
|
|
|
+ "x"
|
|
|
+ ]
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "metadata": {
|
|
|
+ "kernelspec": {
|
|
|
+ "display_name": "Python 3 (ipykernel)",
|
|
|
+ "language": "python",
|
|
|
+ "name": "python3"
|
|
|
+ },
|
|
|
+ "language_info": {
|
|
|
+ "codemirror_mode": {
|
|
|
+ "name": "ipython",
|
|
|
+ "version": 3
|
|
|
+ },
|
|
|
+ "file_extension": ".py",
|
|
|
+ "mimetype": "text/x-python",
|
|
|
+ "name": "python",
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
+ "pygments_lexer": "ipython3",
|
|
|
+ "version": "3.11.4"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "nbformat": 4,
|
|
|
+ "nbformat_minor": 5
|
|
|
+}
|