rasbt пре 2 година
родитељ
комит
c8825b7c22

+ 176 - 0
appendix-A/03_main-chapter-code/exercise-solutions.ipynb

@@ -0,0 +1,176 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Exercise A.3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import torch\n",
+    "\n",
+    "class NeuralNetwork(torch.nn.Module):\n",
+    "    def __init__(self, num_inputs, num_outputs):\n",
+    "        super().__init__()\n",
+    "\n",
+    "        self.layers = torch.nn.Sequential(\n",
+    "                \n",
+    "            # 1st hidden layer\n",
+    "            torch.nn.Linear(num_inputs, 30),\n",
+    "            torch.nn.ReLU(),\n",
+    "\n",
+    "            # 2nd hidden layer\n",
+    "            torch.nn.Linear(30, 20),\n",
+    "            torch.nn.ReLU(),\n",
+    "\n",
+    "            # output layer\n",
+    "            torch.nn.Linear(20, num_outputs),\n",
+    "        )\n",
+    "\n",
+    "    def forward(self, x):\n",
+    "        logits = self.layers(x)\n",
+    "        return logits"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Total number of trainable model parameters: 752\n"
+     ]
+    }
+   ],
+   "source": [
+    "model = NeuralNetwork(2, 2)\n",
+    "\n",
+    "num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
+    "print(\"Total number of trainable model parameters:\", num_params)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Exercise A.4"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "id": "qGgnamiyLJxp"
+   },
+   "outputs": [],
+   "source": [
+    "import torch\n",
+    "\n",
+    "a = torch.rand(100, 200)\n",
+    "b = torch.rand(200, 300)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "CvGvIeVkLzXE",
+    "outputId": "44d027be-0787-4348-9c06-4e559d94d0e1"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "63.8 µs ± 8.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "%timeit a @ b"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "id": "OmRtZLa9L2ZG"
+   },
+   "outputs": [],
+   "source": [
+    "a, b = a.to(\"cuda\"), b.to(\"cuda\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "duLEhXDPL6k0",
+    "outputId": "3486471d-fd62-446f-9855-2d01f41fd101"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "13.8 µs ± 425 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "%timeit a @ b"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "Zqqa-To2L749"
+   },
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "accelerator": "GPU",
+  "colab": {
+   "gpuType": "V100",
+   "machine_shape": "hm",
+   "provenance": []
+  },
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.6"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}

+ 1 - 1
ch02/01_main-chapter-code/dataloader.ipynb

@@ -142,7 +142,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.12"
+   "version": "3.11.4"
   }
  },
  "nbformat": 4,

+ 328 - 0
ch02/01_main-chapter-code/exercise-solutions.ipynb

@@ -0,0 +1,328 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "ab88d307-61ba-45ef-89bc-e3569443dfca",
+   "metadata": {},
+   "source": [
+    "# Chapter 2 Exercise solutions"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6f678e62-7bcb-4405-86ae-dce94f494303",
+   "metadata": {},
+   "source": [
+    "# Exercise 2.1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "7614337f-f639-42c9-a99b-d33f74fa8a03",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import tiktoken\n",
+    "\n",
+    "tokenizer = tiktoken.get_encoding(\"gpt2\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[33901]"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.encode(\"Ak\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "d3664332-e6bb-447e-8b96-203aafde8b24",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[86]"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.encode(\"w\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "2773c09d-c136-4372-a2be-04b58d292842",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[343]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.encode(\"ir\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "8a6abd32-1e0a-4038-9dd2-673f47bcdeb5",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[86]"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.encode(\"w\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "26ae940a-9841-4e27-a1df-b83fc8a488b3",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[220]"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.encode(\" \")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "a606c39a-6747-4cd8-bb38-e3183f80908d",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[959]"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.encode(\"ier\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "47c7268d-8fdc-4957-bc68-5be6113f45a7",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'Akwirw ier'"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.decode([33901, 86, 343, 86, 220, 959])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "29e5034a-95ed-46d8-9972-589354dc9fd4",
+   "metadata": {},
+   "source": [
+    "# Exercise 2.2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "4d50af16-937b-49e0-8ffd-42d30cbb41c9",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import tiktoken\n",
+    "import torch\n",
+    "from torch.utils.data import Dataset, DataLoader\n",
+    "\n",
+    "\n",
+    "class GPTDatasetV1(Dataset):\n",
+    "    def __init__(self, txt, tokenizer, max_length, stride):\n",
+    "        self.tokenizer = tokenizer\n",
+    "        self.input_ids = []\n",
+    "        self.target_ids = []\n",
+    "\n",
+    "        # Tokenize the entire text\n",
+    "        token_ids = tokenizer.encode(txt)\n",
+    "\n",
+    "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
+    "        for i in range(0, len(token_ids) - max_length, stride):\n",
+    "            input_chunk = token_ids[i:i + max_length]\n",
+    "            target_chunk = token_ids[i + 1: i + max_length + 1]\n",
+    "            self.input_ids.append(torch.tensor(input_chunk))\n",
+    "            self.target_ids.append(torch.tensor(target_chunk))\n",
+    "\n",
+    "    def __len__(self):\n",
+    "        return len(self.input_ids)\n",
+    "\n",
+    "    def __getitem__(self, idx):\n",
+    "        return self.input_ids[idx], self.target_ids[idx]\n",
+    "\n",
+    "\n",
+    "def create_dataloader(txt, batch_size=4, max_length=256, stride=128):\n",
+    "    # Initialize the tokenizer\n",
+    "    tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+    "\n",
+    "    # Create dataset\n",
+    "    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
+    "\n",
+    "    # Create dataloader\n",
+    "    dataloader = DataLoader(dataset, batch_size=batch_size)\n",
+    "\n",
+    "    return dataloader\n",
+    "\n",
+    "\n",
+    "with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
+    "    raw_text = f.read()\n",
+    "\n",
+    "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+    "encoded_text = tokenizer.encode(raw_text)\n",
+    "\n",
+    "vocab_size = 50257\n",
+    "output_dim = 256\n",
+    "token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
+    "pos_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "0128eefa-d7c8-4f76-9851-566dfa7c3745",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "tensor([[  40,  367],\n",
+       "        [2885, 1464],\n",
+       "        [1807, 3619],\n",
+       "        [ 402,  271]])"
+      ]
+     },
+     "execution_count": 19,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dataloader = create_dataloader(raw_text, batch_size=4, max_length=2, stride=2)\n",
+    "\n",
+    "for batch in dataloader:\n",
+    "    x, y = batch\n",
+    "    break\n",
+    "\n",
+    "x"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "ff5c1e90-c6de-4a87-adf6-7e19f603291c",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "tensor([[   40,   367,  2885,  1464,  1807,  3619,   402,   271],\n",
+       "        [ 2885,  1464,  1807,  3619,   402,   271, 10899,  2138],\n",
+       "        [ 1807,  3619,   402,   271, 10899,  2138,   257,  7026],\n",
+       "        [  402,   271, 10899,  2138,   257,  7026, 15632,   438]])"
+      ]
+     },
+     "execution_count": 20,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dataloader = create_dataloader(raw_text, batch_size=4, max_length=8, stride=2)\n",
+    "\n",
+    "for batch in dataloader:\n",
+    "    x, y = batch\n",
+    "    break\n",
+    "\n",
+    "x"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}