|
@@ -1608,7 +1608,7 @@
|
|
|
},
|
|
},
|
|
|
{
|
|
{
|
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
|
- "execution_count": 37,
|
|
|
|
|
|
|
+ "execution_count": 39,
|
|
|
"id": "110b0188-6e9e-4e56-a988-10523c6c8538",
|
|
"id": "110b0188-6e9e-4e56-a988-10523c6c8538",
|
|
|
"metadata": {},
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
"outputs": [
|
|
@@ -1672,8 +1672,8 @@
|
|
|
" attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head\n",
|
|
" attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head\n",
|
|
|
" # Original mask truncated to the number of tokens and converted to boolean\n",
|
|
" # Original mask truncated to the number of tokens and converted to boolean\n",
|
|
|
" mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
|
|
" mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
|
|
|
- " # Unsqueeze the mask twice to match dimensions\n",
|
|
|
|
|
- " mask_unsqueezed = mask_bool.unsqueeze(0).unsqueeze(0)\n",
|
|
|
|
|
|
|
+ " # Unsqueeze the mask to match dimensions\n",
|
|
|
|
|
+ " mask_unsqueezed = mask_bool.unsqueeze(0)\n",
|
|
|
" # Use the unsqueezed mask to fill attention scores\n",
|
|
" # Use the unsqueezed mask to fill attention scores\n",
|
|
|
" attn_scores.masked_fill_(mask_unsqueezed, -torch.inf)\n",
|
|
" attn_scores.masked_fill_(mask_unsqueezed, -torch.inf)\n",
|
|
|
" \n",
|
|
" \n",
|
|
@@ -1729,7 +1729,7 @@
|
|
|
},
|
|
},
|
|
|
{
|
|
{
|
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
|
- "execution_count": 38,
|
|
|
|
|
|
|
+ "execution_count": 40,
|
|
|
"id": "e8cfc1ae-78ab-4faa-bc73-98bd054806c9",
|
|
"id": "e8cfc1ae-78ab-4faa-bc73-98bd054806c9",
|
|
|
"metadata": {},
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
"outputs": [
|
|
@@ -1772,7 +1772,7 @@
|
|
|
},
|
|
},
|
|
|
{
|
|
{
|
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
|
- "execution_count": 39,
|
|
|
|
|
|
|
+ "execution_count": 41,
|
|
|
"id": "053760f1-1a02-42f0-b3bf-3d939e407039",
|
|
"id": "053760f1-1a02-42f0-b3bf-3d939e407039",
|
|
|
"metadata": {},
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
"outputs": [
|
|
@@ -1804,7 +1804,7 @@
|
|
|
},
|
|
},
|
|
|
{
|
|
{
|
|
|
"cell_type": "code",
|
|
"cell_type": "code",
|
|
|
- "execution_count": 40,
|
|
|
|
|
|
|
+ "execution_count": 42,
|
|
|
"id": "08c2a3fd-e674-4d69-9ef4-ea94b788e937",
|
|
"id": "08c2a3fd-e674-4d69-9ef4-ea94b788e937",
|
|
|
"metadata": {},
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
"outputs": [
|
|
@@ -1814,7 +1814,7 @@
|
|
|
"2360064"
|
|
"2360064"
|
|
|
]
|
|
]
|
|
|
},
|
|
},
|
|
|
- "execution_count": 40,
|
|
|
|
|
|
|
+ "execution_count": 42,
|
|
|
"metadata": {},
|
|
"metadata": {},
|
|
|
"output_type": "execute_result"
|
|
"output_type": "execute_result"
|
|
|
}
|
|
}
|
|
@@ -1847,14 +1847,6 @@
|
|
|
"source": [
|
|
"source": [
|
|
|
"- See the [./multihead-attention.ipynb](./multihead-attention.ipynb) code notebook, which is a concise version of the data loader (chapter 2) plus the multi-head attention class that we implemented in this chapter and will need for training the GPT model in upcoming chapters."
|
|
"- See the [./multihead-attention.ipynb](./multihead-attention.ipynb) code notebook, which is a concise version of the data loader (chapter 2) plus the multi-head attention class that we implemented in this chapter and will need for training the GPT model in upcoming chapters."
|
|
|
]
|
|
]
|
|
|
- },
|
|
|
|
|
- {
|
|
|
|
|
- "cell_type": "code",
|
|
|
|
|
- "execution_count": null,
|
|
|
|
|
- "id": "9f5b7a94-78d0-49d5-896f-21696cb331b7",
|
|
|
|
|
- "metadata": {},
|
|
|
|
|
- "outputs": [],
|
|
|
|
|
- "source": []
|
|
|
|
|
}
|
|
}
|
|
|
],
|
|
],
|
|
|
"metadata": {
|
|
"metadata": {
|