Sebastian Raschka 1 жил өмнө
parent
commit
b44096acef

+ 6 - 2
ch05/07_gpt_to_llama/README.md

@@ -2,6 +2,10 @@
 
 
 
-This folder contains code for converting the GPT implementation from chapter 4 and 5 to Meta AI's Llama architecture:
+This folder contains code for converting the GPT implementation from chapter 4 and 5 to Meta AI's Llama architecture in the following recommended reading order:
 
-- [converting-gpt-to-llama2.ipynb](converting-gpt-to-llama2.ipynb): contains code to convert GPT to Llama 2 7B step by step and loads pretrained weights from Meta AI
+- [converting-gpt-to-llama2.ipynb](converting-gpt-to-llama2.ipynb): contains code to convert GPT to Llama 2 7B step by step and loads pretrained weights from Meta AI
+- [converting-llama2-to-llama3.ipynb](converting-llama2-to-llama3.ipynb): contains code to convert the Llama 2 model to Llama 3, Llama 3.1, and Llama 3.2
+- [standalone-llama32.ipynb](standalone-llama32.ipynb): a standalone notebook implementing Llama 3.2
+
+<img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/gpt-and-all-llamas.webp">

+ 40 - 2
ch05/07_gpt_to_llama/converting-gpt-to-llama2.ipynb

@@ -108,6 +108,7 @@
     "id": "UJJneXpTEg4W"
    },
    "source": [
+    "&nbsp;\n",
     "# 1. Convert the GPT model implementation step by step"
    ]
   },
@@ -129,6 +130,7 @@
     "id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.1 Replace LayerNorm with RMSNorm layer"
    ]
   },
@@ -228,6 +230,7 @@
     "id": "5eb81f83-c38c-46a4-b763-aa630a32e357"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.2 Replace GELU with SiLU activation"
    ]
   },
@@ -300,6 +303,7 @@
     "id": "4f9b5167-1da9-46c8-9964-8036b3b1deb9"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.3 Update the FeedForward module"
    ]
   },
@@ -388,6 +392,7 @@
     "id": "f6b7bf4f-99d0-42c1-807c-5074d2cc1949"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.4 Implement RoPE"
    ]
   },
@@ -503,6 +508,7 @@
     "id": "f78127b0-dda2-4c5a-98dd-bae8f5fe8297"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.5 Add RoPE to MultiHeadAttention module"
    ]
   },
@@ -652,6 +658,7 @@
     "id": "e5a1a272-a038-4b8f-aaaa-f4b241e7f23f"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.6 Update the TransformerBlock module"
    ]
   },
@@ -727,6 +734,7 @@
     "id": "ada953bc-e2c0-4432-a32d-3f7efa3f6e0f"
    },
    "source": [
+    "&nbsp;\n",
     "## 1.7 Update the model class"
    ]
   },
@@ -791,6 +799,7 @@
     "id": "4bc94940-aaeb-45b9-9399-3a69b8043e60"
    },
    "source": [
+    "&nbsp;\n",
     "## 2. Initialize model"
    ]
   },
@@ -1029,6 +1038,7 @@
     "id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34"
    },
    "source": [
+    "&nbsp;\n",
     "## 3. Load tokenizer"
    ]
   },
@@ -1288,6 +1298,7 @@
     "id": "f63cc248-1d27-4eb6-aa50-173b436652f8"
    },
    "source": [
+    "&nbsp;\n",
     "## 4. Load pretrained weights"
    ]
   },
@@ -1544,6 +1555,15 @@
     "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "d72ed949-b6c0-4966-922f-eb0da732c404",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "## 5. Using the instruction-finetuned model"
+   ]
+  },
   {
    "cell_type": "markdown",
    "id": "akyo7WNyF_YL",
@@ -1551,7 +1571,7 @@
     "id": "akyo7WNyF_YL"
    },
    "source": [
-    "- Tip: as mentioned earlier, this is the pretrained base model; if you want to use a model capable of following instructions, use the `\"meta-llama/Llama-2-7b-chat\"` model instead"
+    "- As mentioned earlier, above we used the pretrained base model; if you want to use a model capable of following instructions, use the `\"meta-llama/Llama-2-7b-chat\"` model instead, as shown below"
    ]
   },
   {
@@ -1630,6 +1650,24 @@
     "\n",
     "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
    ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0f693da1-a07c-4e1d-af5a-c3923525f1e2",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# What's next?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fae93739-ca12-46ba-8ca7-7c07c59f669b",
+   "metadata": {},
+   "source": [
+    "- This notebook converted the original GPT-2 architecture into a Llama 2 model\n",
+    "- If you are interested in how to convert Llama 2 into Llama 3, Llama 3.1, and Llama 3.2, check out the [converting-llama2-to-llama3.ipynb](converting-llama2-to-llama3.ipynb) notebook"
+   ]
   }
  ],
  "metadata": {
@@ -1653,7 +1691,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.6"
+   "version": "3.11.4"
   },
   "widgets": {
    "application/vnd.jupyter.widget-state+json": {

+ 7848 - 0
ch05/07_gpt_to_llama/converting-llama2-to-llama3.ipynb

@@ -0,0 +1,7848 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "0_xya1nyDHfY",
+   "metadata": {
+    "id": "0_xya1nyDHfY"
+   },
+   "source": [
+    "<table style=\"width:100%\">\n",
+    "<tr>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<font size=\"2\">\n",
+    "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
+    "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
+    "</font>\n",
+    "</td>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
+    "</td>\n",
+    "</tr>\n",
+    "</table>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "l62zIRRSBy_R",
+   "metadata": {
+    "id": "l62zIRRSBy_R"
+   },
+   "source": [
+    "# Converting Llama 2 to Llama 3.2 From Scratch"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "aFmxTQbwCUMl",
+   "metadata": {
+    "id": "aFmxTQbwCUMl"
+   },
+   "source": [
+    "- This is a follow-up notebook to [Converting a From-Scratch GPT Architecture to Llama 2](./converting-gpt-to-llama2.ipynb), converting Meta AI's Llama 2 architecture model step by step to Llama 3, Llama 3.1, and Llama 3.2\n",
+    "- The explanations are purposefully kept minimal in this notebook so as not to bloat it unnecessarily and focus on the main code\n",
+    "- For more information about the architectures, please see the Llama 2 and Llama 3 papers\n",
+    " - [Llama 2: Open Foundation and Fine-Tuned Chat Models (2023)](https://arxiv.org/abs/2307.09288)\n",
+    " - [The Llama 3 Herd of Models](https://arxiv.org/abs/2407.21783)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ohhMKUWvGm9z",
+   "metadata": {
+    "id": "ohhMKUWvGm9z"
+   },
+   "source": [
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/gpt2-to-llama2-llama3.webp?1\">"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ws0wsUzwLH2k",
+   "metadata": {
+    "id": "ws0wsUzwLH2k"
+   },
+   "outputs": [],
+   "source": [
+    "# pip install -r requirements-extra.txt"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "JBpQwU89ETA1",
+   "metadata": {
+    "id": "JBpQwU89ETA1"
+   },
+   "source": [
+    "- Packages that are being used in this notebook:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
+    "outputId": "1a64035b-daeb-4514-a49f-6bfde84357e7"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "blobfile version: 3.0.0\n",
+      "huggingface_hub version: 0.24.7\n",
+      "tiktoken version: 0.8.0\n",
+      "torch version: 2.4.1+cu121\n"
+     ]
+    }
+   ],
+   "source": [
+    "from importlib.metadata import version\n",
+    "\n",
+    "pkgs = [\n",
+    "    \"blobfile\",         # to download pretrained weights\n",
+    "    \"huggingface_hub\",  # to download pretrained weights\n",
+    "    \"tiktoken\",         # to implement the tokenizer\n",
+    "    \"torch\",            # to implement the model\n",
+    "]\n",
+    "for p in pkgs:\n",
+    "    print(f\"{p} version: {version(p)}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "UJJneXpTEg4W",
+   "metadata": {
+    "id": "UJJneXpTEg4W"
+   },
+   "source": [
+    "&nbsp;\n",
+    "# 1. Convert the Llama model implementation step by step"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "v1zpfX2GHBKa",
+   "metadata": {
+    "id": "v1zpfX2GHBKa"
+   },
+   "source": [
+    "- If you are new to implementing LLM architectures, I recommend starting with [chapter 4](../../ch04/01_main-chapter-code/ch04.ipynb), which walks you through the implementation of the original GPT architecture step by step\n",
+    "- The [Converting a From-Scratch GPT Architecture to Llama 2](./converting-gpt-to-llama2.ipynb) then implements the Llama-specific components, such as RMSNorm layers, SiLU and SwiGLU activations, RoPE (rotary position embeddings), and the SentencePiece tokenizer\n",
+    "- This notebook takes the Llama 2 architecture and transforms it into Llama 3 architecture by\n",
+    " 1. modifying the rotary embeddings\n",
+    " 2. implementing grouped-query attention\n",
+    " 3. and using a customized version of the GPT-4 tokenizer\n",
+    "- Later, we then load the original Llama 3 weights shared by Meta AI into the architecture"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c14b9121-abe1-4a46-99b8-acdef71e5b41",
+   "metadata": {
+    "id": "c14b9121-abe1-4a46-99b8-acdef71e5b41"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 1.1 Reusing Llama 2 components"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "dgDhJGJ6xR4e",
+   "metadata": {
+    "id": "dgDhJGJ6xR4e"
+   },
+   "source": [
+    "- Llama 2 is actually quite similar to Llama 3, as mentioned above and illustrated in the figure at the top of this notebook\n",
+    "- This means that we can import several building blocks from the [Llama 2 notebook](./converting-gpt-to-llama2.ipynb) using the following code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "a5bc3948-231b-4f1f-8d41-24ad0b7643d0",
+   "metadata": {
+    "id": "a5bc3948-231b-4f1f-8d41-24ad0b7643d0"
+   },
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "import sys\n",
+    "import io\n",
+    "import nbformat\n",
+    "import types\n",
+    "\n",
+    "def import_from_notebook():\n",
+    "    def import_definitions_from_notebook(fullname, names):\n",
+    "        current_dir = os.getcwd()\n",
+    "        path = os.path.join(current_dir, fullname + \".ipynb\")\n",
+    "        path = os.path.normpath(path)\n",
+    "\n",
+    "        # Load the notebook\n",
+    "        if not os.path.exists(path):\n",
+    "            raise FileNotFoundError(f\"Notebook file not found at: {path}\")\n",
+    "\n",
+    "        with io.open(path, \"r\", encoding=\"utf-8\") as f:\n",
+    "            nb = nbformat.read(f, as_version=4)\n",
+    "\n",
+    "        # Create a module to store the imported functions and classes\n",
+    "        mod = types.ModuleType(fullname)\n",
+    "        sys.modules[fullname] = mod\n",
+    "\n",
+    "        # Go through the notebook cells and only execute function or class definitions\n",
+    "        for cell in nb.cells:\n",
+    "            if cell.cell_type == \"code\":\n",
+    "                cell_code = cell.source\n",
+    "                for name in names:\n",
+    "                    # Check for function or class definitions\n",
+    "                    if f\"def {name}\" in cell_code or f\"class {name}\" in cell_code:\n",
+    "                        exec(cell_code, mod.__dict__)\n",
+    "        return mod\n",
+    "\n",
+    "    fullname = \"converting-gpt-to-llama2\"\n",
+    "    names = [\"precompute_rope_params\", \"compute_rope\", \"SiLU\", \"FeedForward\", \"RMSNorm\", \"MultiHeadAttention\"]\n",
+    "\n",
+    "    return import_definitions_from_notebook(fullname, names)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "d546032d-fce4-47cf-8d0e-682b78b21c61",
+   "metadata": {
+    "id": "d546032d-fce4-47cf-8d0e-682b78b21c61"
+   },
+   "outputs": [],
+   "source": [
+    "imported_module = import_from_notebook()\n",
+    "\n",
+    "# We need to redefine precompute_rope_params\n",
+    "# precompute_rope_params = getattr(imported_module, \"precompute_rope_params\", None)\n",
+    "compute_rope = getattr(imported_module, \"compute_rope\", None)\n",
+    "SiLU = getattr(imported_module, \"SiLU\", None)\n",
+    "FeedForward = getattr(imported_module, \"FeedForward\", None)\n",
+    "RMSNorm = getattr(imported_module, \"RMSNorm\", None)\n",
+    "\n",
+    "# MultiHeadAttention only for comparison purposes\n",
+    "MultiHeadAttention = getattr(imported_module, \"MultiHeadAttention\", None)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f",
+   "metadata": {
+    "id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 1.2 Modified RoPE"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "m9_oDcHCx8VI",
+   "metadata": {
+    "id": "m9_oDcHCx8VI"
+   },
+   "source": [
+    "- Llama 3 uses rotary position embeddings (RoPE) similar to Llama 2 (for a detailed explanation, please see the [RoPE paper](https://arxiv.org/abs/2104.09864))\n",
+    "- There are some subtle differences in the RoPE settings, though\n",
+    " - Llama 3 now supports up to 8,192 tokens, twice as many as Llama 2 (4,096)\n",
+    " - The base value for the so-called RoPE $\\theta$ (see equation below) was increased from 10,000 (Llama 2) to 50,000 (Llama 3) in the following equation (adapted from the [RoPE paper](https://arxiv.org/abs/2104.09864))\n",
+    "\n",
+    "$$\\Theta = \\left\\{\\theta_i = \\text{base}^{\\frac{2(i-1)}{d}}, i \\in \\left[1, 2, ..., d/2\\right]\\right\\}$$\n",
+    "\n",
+    "- These $\\theta$ values are a set of predefined parameters that are used to determine the rotational angles in the rotary matrix, where $d$ is the dimensionality of the embedding space\n",
+    "- Increasing the base from 10,000 to 50,000 makes the frequencies (or rotation angles) decay more slowly across the dimensions, which means that higher dimensions will be associated with larger angles than before (essentially, it's a decompression of the frequencies)\n",
+    "- In addition, we introduce a `freq_config` section in the code below that adjusts the frequency; however, we won't be needing it in Llama 3 (only Llama 3.1 and Llama 3.2), so we will revisit this `freq_config` later (it's set to `None` and ignored by default)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "6Upl109OOAcu",
+   "metadata": {
+    "id": "6Upl109OOAcu"
+   },
+   "outputs": [],
+   "source": [
+    "import torch\n",
+    "\n",
+    "def precompute_rope_params(head_dim, theta_base=10000, context_length=4096, freq_config=None):\n",
+    "    assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
+    "\n",
+    "    # Compute the inverse frequencies\n",
+    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
+    "\n",
+    "    ################################ NEW ###############################################\n",
+    "    # Frequency adjustments\n",
+    "    if freq_config is not None:\n",
+    "        low_freq_wavelen = freq_config[\"original_context_length\"] / freq_config[\"low_freq_factor\"]\n",
+    "        high_freq_wavelen = freq_config[\"original_context_length\"] / freq_config[\"high_freq_factor\"]\n",
+    "\n",
+    "        wavelen = 2 * torch.pi / inv_freq\n",
+    "\n",
+    "        inv_freq_llama = torch.where(\n",
+    "            wavelen > low_freq_wavelen, inv_freq / freq_config[\"factor\"], inv_freq\n",
+    "        )\n",
+    "\n",
+    "        smooth_factor = (freq_config[\"original_context_length\"] / wavelen - freq_config[\"low_freq_factor\"]) / (\n",
+    "            freq_config[\"high_freq_factor\"] - freq_config[\"low_freq_factor\"]\n",
+    "        )\n",
+    "\n",
+    "        smoothed_inv_freq = (\n",
+    "            (1 - smooth_factor) * (inv_freq / freq_config[\"factor\"]) + smooth_factor * inv_freq\n",
+    "        )\n",
+    "\n",
+    "        is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)\n",
+    "        inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)\n",
+    "        inv_freq = inv_freq_llama\n",
+    "    ####################################################################################\n",
+    "\n",
+    "\n",
+    "    # Generate position indices\n",
+    "    positions = torch.arange(context_length)\n",
+    "\n",
+    "    # Compute the angles\n",
+    "    angles = positions[:, None] * inv_freq[None, :]  # Shape: (context_length, head_dim // 2)\n",
+    "\n",
+    "    # Expand angles to match the head_dim\n",
+    "    angles = torch.cat([angles, angles], dim=1)  # Shape: (context_length, head_dim)\n",
+    "\n",
+    "    # Precompute sine and cosine\n",
+    "    cos = torch.cos(angles)\n",
+    "    sin = torch.sin(angles)\n",
+    "\n",
+    "    return cos, sin"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "jJBvO0YMJBXR",
+   "metadata": {
+    "id": "jJBvO0YMJBXR"
+   },
+   "source": [
+    "- To summarize, what's new so far for Llama 3 compared to Llama 2 are the context length and theta base parameter:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "56c37216-e022-4603-be16-f9d3eaeaf4a1",
+   "metadata": {
+    "id": "56c37216-e022-4603-be16-f9d3eaeaf4a1"
+   },
+   "outputs": [],
+   "source": [
+    "# Instantiate RoPE parameters\n",
+    "\n",
+    "llama_2_context_len = 4096\n",
+    "llama_3_context_len = 8192\n",
+    "\n",
+    "llama_2_theta_base = 10_000\n",
+    "llama_3_theta_base = 50_000"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "_V8v6i7MJItU",
+   "metadata": {
+    "id": "_V8v6i7MJItU"
+   },
+   "source": [
+    "- The usage remains the same as before in Llama 2:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "dae70c8a-eb18-40f9-a2e5-a6af2a57628b",
+   "metadata": {
+    "id": "dae70c8a-eb18-40f9-a2e5-a6af2a57628b"
+   },
+   "outputs": [],
+   "source": [
+    "# Settings\n",
+    "batch_size = 2\n",
+    "num_heads = 4\n",
+    "head_dim = 16\n",
+    "\n",
+    "# Instantiate RoPE parameters\n",
+    "cos, sin = precompute_rope_params(\n",
+    "    head_dim=head_dim,\n",
+    "    theta_base=llama_3_theta_base,\n",
+    "    context_length=llama_3_context_len\n",
+    ")\n",
+    "\n",
+    "# Dummy query and key tensors\n",
+    "torch.manual_seed(123)\n",
+    "queries = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
+    "keys = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
+    "\n",
+    "# Apply rotary position embeddings\n",
+    "queries_rot = compute_rope(queries, cos, sin)\n",
+    "keys_rot = compute_rope(keys, cos, sin)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "cd19b75c-cf25-47b8-a010-6733fc0e9a8a",
+   "metadata": {
+    "id": "cd19b75c-cf25-47b8-a010-6733fc0e9a8a"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 1.3 Grouped-query attention"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "111c7d3f-fded-49e8-a617-9fe67b81dddc",
+   "metadata": {
+    "id": "111c7d3f-fded-49e8-a617-9fe67b81dddc"
+   },
+   "source": [
+    "- In this section, we replace multi-head attention (MHA) with an alternative mechanism called grouped-query attention (GQA)\n",
+    "- In short, one can think of GQA as a more compute- and parameter-efficient version of MHA\n",
+    "- In GQA, we reduce the number of key and value projections by sharing them among multiple attention heads\n",
+    "- Each attention head still has its unique query, but these queries attend to the same group of keys and values\n",
+    "- Below is an illustration of GQA with 2 key-value-groups (kv-groups):\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/grouped-query-attention.webp\" width=\"500px\">\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "perAYa2R_KW2",
+   "metadata": {
+    "id": "perAYa2R_KW2"
+   },
+   "source": [
+    "- The main idea behind GQA is to reduce the number of unique query groups that attend to the key-value pairs, reducing the size of some of the matrix multiplications and the number of parameters in MHA without significantly reducing modeling performance\n",
+    "- The GQA code is very similar to MHA (I highlighted the changes below via the \"NEW\" sections)\n",
+    "- In short, the main change in GQA is that each query group needs to be repeated to match the number of heads it is associated with, as implemented below"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "9b12e674-ef08-4dd7-8843-615b65b39c91",
+   "metadata": {
+    "id": "9b12e674-ef08-4dd7-8843-615b65b39c91"
+   },
+   "outputs": [],
+   "source": [
+    "import torch.nn as nn\n",
+    "\n",
+    "class GroupedQueryAttention(nn.Module):\n",
+    "    def __init__(\n",
+    "            self, d_in, d_out, context_length, num_heads,\n",
+    "            num_kv_groups,       # NEW\n",
+    "            rope_base=10_000,    # NEW\n",
+    "            rope_config=None,    # NEW\n",
+    "            dtype=None\n",
+    "        ):\n",
+    "        super().__init__()\n",
+    "        assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
+    "        assert num_heads % num_kv_groups == 0, \"num_heads must be divisible by num_kv_groups\"\n",
+    "\n",
+    "        self.d_out = d_out\n",
+    "        self.num_heads = num_heads\n",
+    "        self.head_dim = d_out // num_heads\n",
+    "\n",
+    "        ############################# NEW  #############################\n",
+    "        # self.W_key = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
+    "        # self.W_value = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
+    "        self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)\n",
+    "        self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)\n",
+    "        self.num_kv_groups = num_kv_groups\n",
+    "        self.group_size = num_heads // num_kv_groups\n",
+    "        ################################################################\n",
+    "\n",
+    "        self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
+    "        self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)\n",
+    "\n",
+    "        self.register_buffer(\"mask\", torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
+    "        cos, sin = precompute_rope_params(\n",
+    "            head_dim=self.head_dim,\n",
+    "            theta_base=rope_base,      # NEW\n",
+    "            freq_config=rope_config,   # NEW\n",
+    "            context_length=8192\n",
+    "        )\n",
+    "        self.register_buffer(\"cos\", cos)\n",
+    "        self.register_buffer(\"sin\", sin)\n",
+    "\n",
+    "    def forward(self, x):\n",
+    "        b, num_tokens, d_in = x.shape\n",
+    "\n",
+    "        queries = self.W_query(x)  # Shape: (b, num_tokens, d_out)\n",
+    "        keys = self.W_key(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)\n",
+    "        values = self.W_value(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)\n",
+    "\n",
+    "        # Reshape queries, keys, and values\n",
+    "        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
+    "\n",
+    "        ##################### NEW  #####################\n",
+    "        # keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)\n",
+    "        # values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
+    "        keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)\n",
+    "        values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)\n",
+    "        ################################################\n",
+    "\n",
+    "        # Transpose keys, values, and queries\n",
+    "        keys = keys.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        values = values.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        queries = queries.transpose(1, 2)  # Shape: (b, num_query_groups, num_tokens, head_dim)\n",
+    "\n",
+    "        # Apply RoPE\n",
+    "        keys = compute_rope(keys, self.cos, self.sin)\n",
+    "        queries = compute_rope(queries, self.cos, self.sin)\n",
+    "\n",
+    "        ##################### NEW  #####################\n",
+    "        # Expand keys and values to match the number of heads\n",
+    "        # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "\n",
+    "        keys = keys.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        values = values.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        # For example, before repeat_interleave along dim=1 (query groups):\n",
+    "        #   [K1, K2]\n",
+    "        # After repeat_interleave (each query group is repeated group_size times):\n",
+    "        #   [K1, K1, K2, K2]\n",
+    "        # If we used regular repeat instead of repeat_interleave, we'd get:\n",
+    "        #   [K1, K2, K1, K2]\n",
+    "        ################################################\n",
+    "\n",
+    "        # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
+    "        # Shape: (b, num_heads, num_tokens, num_tokens)\n",
+    "        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head\n",
+    "\n",
+    "        # Original mask truncated to the number of tokens and converted to boolean\n",
+    "        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
+    "\n",
+    "        # Use the mask to fill attention scores\n",
+    "        attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
+    "\n",
+    "        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
+    "        assert keys.shape[-1] == self.head_dim\n",
+    "\n",
+    "        # Shape: (b, num_tokens, num_heads, head_dim)\n",
+    "        context_vec = (attn_weights @ values).transpose(1, 2)\n",
+    "\n",
+    "        # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
+    "        context_vec = context_vec.reshape(b, num_tokens, self.d_out)\n",
+    "        context_vec = self.out_proj(context_vec)  # optional projection\n",
+    "\n",
+    "        return context_vec"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "roAXSwJs9hR8",
+   "metadata": {
+    "id": "roAXSwJs9hR8"
+   },
+   "source": [
+    "- To illustrate the parameter savings, consider the following multi-head attention example from the GPT and Llama 2 code:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "b4b8f085-349e-4674-a3f0-78fde0664fac",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "b4b8f085-349e-4674-a3f0-78fde0664fac",
+    "outputId": "16b37235-d4a0-41ac-b878-f0d2f9584174"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "W_key: torch.Size([4096, 4096])\n",
+      "W_value: torch.Size([4096, 4096])\n",
+      "W_query: torch.Size([4096, 4096])\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Settings\n",
+    "batch_size = 1\n",
+    "context_len = 3000\n",
+    "max_context_len = 8192\n",
+    "embed_dim = 4096\n",
+    "num_heads = 32\n",
+    "\n",
+    "\n",
+    "example_batch = torch.randn((batch_size, context_len, embed_dim))\n",
+    "\n",
+    "mha = MultiHeadAttention(\n",
+    "    d_in=embed_dim,\n",
+    "    d_out=embed_dim,\n",
+    "    context_length=max_context_len,\n",
+    "    num_heads=num_heads\n",
+    ")\n",
+    "\n",
+    "mha(example_batch)\n",
+    "\n",
+    "print(\"W_key:\", mha.W_key.weight.shape)\n",
+    "print(\"W_value:\", mha.W_value.weight.shape)\n",
+    "print(\"W_query:\", mha.W_query.weight.shape)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "IMQtFkcQ9sXC",
+   "metadata": {
+    "id": "IMQtFkcQ9sXC"
+   },
+   "source": [
+    "- Now, if we use grouped-query attention instead, with 8 kv-groups (that's how many Llama 3 8B uses), we can see that the number of rows of the key and value matrices are reduced by a factor of 4 (because 32 attention heads divided by 8 kv-groups is 4)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "15e65d3c-7b42-4ed3-bfee-bb09578657bb",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "15e65d3c-7b42-4ed3-bfee-bb09578657bb",
+    "outputId": "85432dba-827b-4a27-aedd-63f9c5044352"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "W_key: torch.Size([1024, 4096])\n",
+      "W_value: torch.Size([1024, 4096])\n",
+      "W_query: torch.Size([4096, 4096])\n"
+     ]
+    }
+   ],
+   "source": [
+    "gqa = GroupedQueryAttention(\n",
+    "    d_in=embed_dim,\n",
+    "    d_out=embed_dim,\n",
+    "    context_length=max_context_len,\n",
+    "    num_heads=num_heads,\n",
+    "    num_kv_groups=8,\n",
+    "    rope_base=llama_3_theta_base\n",
+    ")\n",
+    "\n",
+    "gqa(example_batch)\n",
+    "\n",
+    "print(\"W_key:\", gqa.W_key.weight.shape)\n",
+    "print(\"W_value:\", gqa.W_value.weight.shape)\n",
+    "print(\"W_query:\", gqa.W_query.weight.shape)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1a5d4c88-c66a-483b-b4e2-419ff9fd60d5",
+   "metadata": {
+    "id": "1a5d4c88-c66a-483b-b4e2-419ff9fd60d5"
+   },
+   "source": [
+    "- As a side note, to make the GroupedQueryAttention equivalent to standard multi-head attention, you can set the number of query groups (`num_kv_groups`) equal to the number of heads (`num_heads`)\n",
+    "- Lastly, let's compare the number of parameters below:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "58f713aa-ac00-4e2f-8247-94609aa01350",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "58f713aa-ac00-4e2f-8247-94609aa01350",
+    "outputId": "20caa098-41bd-4572-e8b7-1020073c5912"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Total number of parameters:\n",
+      "MHA: 67,108,864\n",
+      "GQA: 41,943,040\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Total number of parameters:\")\n",
+    "\n",
+    "mha_total_params = sum(p.numel() for p in mha.parameters())\n",
+    "print(f\"MHA: {mha_total_params:,}\")\n",
+    "\n",
+    "gqa_total_params = sum(p.numel() for p in gqa.parameters())\n",
+    "print(f\"GQA: {gqa_total_params:,}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "78b60dfd-6c0f-41f7-8f0c-8e57116f07f5",
+   "metadata": {
+    "id": "78b60dfd-6c0f-41f7-8f0c-8e57116f07f5"
+   },
+   "outputs": [],
+   "source": [
+    "# Free up memory:\n",
+    "del mha\n",
+    "del gqa"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8fcd8802-2859-45a2-905a-f4fe96629dd9",
+   "metadata": {
+    "id": "8fcd8802-2859-45a2-905a-f4fe96629dd9"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 1.4 Update the TransformerBlock module"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "KABNccft_YnR",
+   "metadata": {
+    "id": "KABNccft_YnR"
+   },
+   "source": [
+    "- Next, we update the `TransformerBlock`\n",
+    "- Here, we simply swap `MultiHeadAttention` with `GroupedQueryAttention` and add the new RoPE settings"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "f9fa8eb4-7196-4dee-aec6-0dcbc70921c4",
+   "metadata": {
+    "id": "f9fa8eb4-7196-4dee-aec6-0dcbc70921c4"
+   },
+   "outputs": [],
+   "source": [
+    "class TransformerBlock(nn.Module):\n",
+    "    def __init__(self, cfg):\n",
+    "        super().__init__()\n",
+    "        self.att =  GroupedQueryAttention(  # MultiHeadAttention(\n",
+    "            d_in=cfg[\"emb_dim\"],\n",
+    "            d_out=cfg[\"emb_dim\"],\n",
+    "            context_length=cfg[\"context_length\"],\n",
+    "            num_heads=cfg[\"n_heads\"],\n",
+    "            num_kv_groups=cfg[\"n_kv_groups\"],  # NEW\n",
+    "            rope_base=cfg[\"rope_base\"],        # NEW\n",
+    "            rope_config=cfg[\"rope_freq\"],      # NEW\n",
+    "            dtype=cfg[\"dtype\"]\n",
+    "        )\n",
+    "        self.ff = FeedForward(cfg)\n",
+    "        self.norm1 = RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
+    "        self.norm2 = RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
+    "\n",
+    "    def forward(self, x):\n",
+    "        # Shortcut connection for attention block\n",
+    "        shortcut = x\n",
+    "        x = self.norm1(x)\n",
+    "        x = self.att(x.to(torch.bfloat16))   # Shape [batch_size, num_tokens, emb_size]\n",
+    "        x = x + shortcut  # Add the original input back\n",
+    "\n",
+    "        # Shortcut connection for feed-forward block\n",
+    "        shortcut = x\n",
+    "        x = self.norm2(x)\n",
+    "        x = self.ff(x.to(torch.bfloat16))\n",
+    "        x = x + shortcut  # Add the original input back\n",
+    "\n",
+    "        return x"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fd921ab5-c48c-4c52-bf41-b847b3b822b9",
+   "metadata": {
+    "id": "fd921ab5-c48c-4c52-bf41-b847b3b822b9"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 1.5 Defining the model class"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "M_tLAq_r_llN",
+   "metadata": {
+    "id": "M_tLAq_r_llN"
+   },
+   "source": [
+    "- When setting up the model class, we fortunately don't have to do much; we just update the name to `Llama3Model`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "475755d6-01f7-4e6e-ad9a-cec6f031ebf6",
+   "metadata": {
+    "id": "475755d6-01f7-4e6e-ad9a-cec6f031ebf6"
+   },
+   "outputs": [],
+   "source": [
+    "# class Llama2Model(nn.Module):\n",
+    "class Llama3Model(nn.Module):\n",
+    "    def __init__(self, cfg):\n",
+    "        super().__init__()\n",
+    "        self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"])\n",
+    "\n",
+    "        self.trf_blocks = nn.Sequential(\n",
+    "            *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])])\n",
+    "\n",
+    "        self.final_norm = RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
+    "        self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False, dtype=cfg[\"dtype\"])\n",
+    "\n",
+    "    def forward(self, in_idx):\n",
+    "        batch_size, seq_len = in_idx.shape\n",
+    "        tok_embeds = self.tok_emb(in_idx)\n",
+    "        x = tok_embeds\n",
+    "        x = self.trf_blocks(x)\n",
+    "        x = self.final_norm(x)\n",
+    "        logits = self.out_head(x.to(torch.bfloat16))\n",
+    "        return logits"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4bc94940-aaeb-45b9-9399-3a69b8043e60",
+   "metadata": {
+    "id": "4bc94940-aaeb-45b9-9399-3a69b8043e60"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 2. Initialize model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "HoGGRAGykQTE",
+   "metadata": {
+    "id": "HoGGRAGykQTE"
+   },
+   "source": [
+    "- Now we can define a Llama 3 config file (the Llama 2 config file is shown for comparison)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18",
+   "metadata": {
+    "id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18"
+   },
+   "outputs": [],
+   "source": [
+    "LLAMA2_CONFIG_7B = {\n",
+    "    \"vocab_size\": 32_000,    # Vocabulary size\n",
+    "    \"context_length\": 4096,  # Context length\n",
+    "    \"emb_dim\": 4096,         # Embedding dimension\n",
+    "    \"n_heads\": 32,           # Number of attention heads\n",
+    "    \"n_layers\": 32,          # Number of layers\n",
+    "    \"hidden_dim\": 11_008,    # Size of the intermediate dimension in FeedForward\n",
+    "    \"dtype\": torch.bfloat16  # Lower-precision dtype to save memory\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "2ad90f82-15c7-4806-b509-e45b56f57db5",
+   "metadata": {
+    "id": "2ad90f82-15c7-4806-b509-e45b56f57db5"
+   },
+   "outputs": [],
+   "source": [
+    "LLAMA3_CONFIG_8B = {\n",
+    "    \"vocab_size\": 128_256,   # NEW: Larger vocabulary size\n",
+    "    \"context_length\": 8192,  # NEW: Larger context length\n",
+    "    \"emb_dim\": 4096,         # Embedding dimension\n",
+    "    \"n_heads\": 32,           # Number of attention heads\n",
+    "    \"n_layers\": 32,          # Number of layers\n",
+    "    \"hidden_dim\": 14_336,    # NEW: Larger size of the intermediate dimension in FeedForward\n",
+    "    \"n_kv_groups\": 8,        # NEW: Key-Value groups for grouped-query attention\n",
+    "    \"rope_base\": 50_000,     # NEW: The base in RoPE's \"theta\" was increased to 50_000\n",
+    "    \"rope_freq\": None,       # NEW: Additional configuration for adjusting the RoPE frequencies\n",
+    "    \"dtype\": torch.bfloat16  # Lower-precision dtype to save memory\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "FAP7fiBzkaBz",
+   "metadata": {
+    "id": "FAP7fiBzkaBz"
+   },
+   "source": [
+    "- Using these settings, we can now initialize a Llama 3 8B model\n",
+    "- Note that this requires ~34 GB of memory (for comparison, Llama 2 7B required ~26 GB of memory)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "7004d785-ac9a-4df5-8760-6807fc604686",
+   "metadata": {
+    "id": "7004d785-ac9a-4df5-8760-6807fc604686"
+   },
+   "outputs": [],
+   "source": [
+    "model = Llama3Model(LLAMA3_CONFIG_8B)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "6079f747-8f20-4c6b-8d38-7156f1101729",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "6079f747-8f20-4c6b-8d38-7156f1101729",
+    "outputId": "8ce6476f-ea77-4513-d31a-3d3cdffa3044"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Total number of parameters: 8,030,261,248\n"
+     ]
+    }
+   ],
+   "source": [
+    "total_params = sum(p.numel() for p in model.parameters())\n",
+    "print(f\"Total number of parameters: {total_params:,}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "Bx14NtzWk2wj",
+   "metadata": {
+    "id": "Bx14NtzWk2wj"
+   },
+   "source": [
+    "- As shown above, the model contains 8 billion parameters\n",
+    "- Additionally, we can calculate the memory requirements for this model using the code below:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
+    "outputId": "13683a74-017a-41d1-a49f-c264f899c4cc"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "float32 (PyTorch default): 68.08 GB\n",
+      "bfloat16: 34.04 GB\n"
+     ]
+    }
+   ],
+   "source": [
+    "def model_memory_size(model, input_dtype=torch.float32):\n",
+    "    total_params = 0\n",
+    "    total_grads = 0\n",
+    "    for param in model.parameters():\n",
+    "        # Calculate total number of elements per parameter\n",
+    "        param_size = param.numel()\n",
+    "        total_params += param_size\n",
+    "        # Check if gradients are stored for this parameter\n",
+    "        if param.requires_grad:\n",
+    "            total_grads += param_size\n",
+    "\n",
+    "    # Calculate buffer size (non-parameters that require memory)\n",
+    "    total_buffers = sum(buf.numel() for buf in model.buffers())\n",
+    "\n",
+    "    # Size in bytes = (Number of elements) * (Size of each element in bytes)\n",
+    "    # We assume parameters and gradients are stored in the same type as input dtype\n",
+    "    element_size = torch.tensor(0, dtype=input_dtype).element_size()\n",
+    "    total_memory_bytes = (total_params + total_grads + total_buffers) * element_size\n",
+    "\n",
+    "    # Convert bytes to gigabytes\n",
+    "    total_memory_gb = total_memory_bytes / (1024**3)\n",
+    "\n",
+    "    return total_memory_gb\n",
+    "\n",
+    "print(f\"float32 (PyTorch default): {model_memory_size(model, input_dtype=torch.float32):.2f} GB\")\n",
+    "print(f\"bfloat16: {model_memory_size(model, input_dtype=torch.bfloat16):.2f} GB\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "zudd-5PulKFL",
+   "metadata": {
+    "id": "zudd-5PulKFL"
+   },
+   "source": [
+    "- Lastly, we can also transfer the model to an NVIDIA or Apple Silicon GPU if applicable:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d",
+   "metadata": {
+    "id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d"
+   },
+   "outputs": [],
+   "source": [
+    "if torch.cuda.is_available():\n",
+    "    device = torch.device(\"cuda\")\n",
+    "elif torch.backends.mps.is_available():\n",
+    "    device = torch.device(\"mps\")\n",
+    "else:\n",
+    "    device = torch.device(\"cpu\")\n",
+    "\n",
+    "model.to(device);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34",
+   "metadata": {
+    "id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 3. Load tokenizer"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0eb30f0c-6144-4bed-87d9-6b2bac377005",
+   "metadata": {
+    "id": "0eb30f0c-6144-4bed-87d9-6b2bac377005"
+   },
+   "source": [
+    "- In this section, we are going to load the tokenizer for the model\n",
+    "- Llama 2 used Google's [SentencePiece](https://github.com/google/sentencepiece) tokenizer instead of OpenAI's BPE tokenizer based on the [Tiktoken](https://github.com/openai/tiktoken) library\n",
+    "- Llama 3, however, reverted back to using the BPE tokenizer from Tiktoken; specifically, it uses the GPT-4 tokenizer with an extended vocabulary\n",
+    "- You can find the original Tiktoken-adaptation by Meta AI [here](https://github.com/meta-llama/llama3/blob/main/llama/tokenizer.py) in their official Llama 3 repository\n",
+    "- Below, I rewrote the tokenizer code to make it more readable and minimal for this notebook (but the behavior should be similar)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "id": "5f390cbf-8f92-46dc-afe3-d90b5affae10",
+   "metadata": {
+    "id": "5f390cbf-8f92-46dc-afe3-d90b5affae10"
+   },
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "from pathlib import Path\n",
+    "\n",
+    "import tiktoken\n",
+    "from tiktoken.load import load_tiktoken_bpe\n",
+    "\n",
+    "\n",
+    "class Tokenizer:\n",
+    "    def __init__(self, model_path):\n",
+    "        assert os.path.isfile(model_path), f\"Model file {model_path} not found\"\n",
+    "        mergeable_ranks = load_tiktoken_bpe(model_path)\n",
+    "        num_base_tokens = len(mergeable_ranks)\n",
+    "\n",
+    "        self.special_tokens = {\n",
+    "            \"<|begin_of_text|>\": 128000,\n",
+    "            \"<|end_of_text|>\": 128001,\n",
+    "            \"<|start_header_id|>\": 128006,\n",
+    "            \"<|end_header_id|>\": 128007,\n",
+    "            \"<|eot_id|>\": 128009,\n",
+    "        }\n",
+    "        self.special_tokens.update({\n",
+    "            f\"<|reserved_{i}|>\": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values()\n",
+    "        })\n",
+    "\n",
+    "        self.model = tiktoken.Encoding(\n",
+    "            name=Path(model_path).name,\n",
+    "            pat_str=r\"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+\",\n",
+    "            mergeable_ranks=mergeable_ranks,\n",
+    "            special_tokens=self.special_tokens\n",
+    "        )\n",
+    "\n",
+    "\n",
+    "    def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()):\n",
+    "        if bos:\n",
+    "            tokens = [self.special_tokens[\"<|begin_of_text|>\"]]\n",
+    "        else:\n",
+    "            tokens = []\n",
+    "\n",
+    "        tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)\n",
+    "\n",
+    "        if eos:\n",
+    "            tokens.append(self.special_tokens[\"<|end_of_text|>\"])\n",
+    "        return tokens\n",
+    "\n",
+    "    def decode(self, tokens):\n",
+    "        return self.model.decode(tokens)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0a1509f8-8778-4fec-ba32-14d95c646167",
+   "metadata": {
+    "id": "0a1509f8-8778-4fec-ba32-14d95c646167"
+   },
+   "source": [
+    "- Meta AI shared the original Llama 3 model weights and tokenizer vocabulary on the Hugging Face Hub\n",
+    "- We will first download the tokenizer vocabulary from the Hub and load it into the code above"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "KbnlzsbYmJU6",
+   "metadata": {
+    "id": "KbnlzsbYmJU6"
+   },
+   "source": [
+    "- Please note that Meta AI requires that you accept the Llama 3 licensing terms before you can download the files; to do this, you have to create a Hugging Face Hub account and visit the [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) repository to accept the terms\n",
+    "- Next, you will need to create an access token; to generate an access token with READ permissions, click on the profile picture in the upper right and click on \"Settings\"\n",
+    "\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/settings.webp?1\" width=\"300px\">\n",
+    "\n",
+    "- Then, create and copy the access token so you can copy & paste it into the next code cell\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/access-token.webp?1\" width=\"600px\">"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "id": "3357a230-b678-4691-a238-257ee4e80185",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "3357a230-b678-4691-a238-257ee4e80185",
+    "outputId": "57472e6e-95c4-4b41-bc18-231f6ff69e95"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
+      "Token is valid (permission: read).\n",
+      "Your token has been saved to /root/.cache/huggingface/token\n",
+      "Login successful\n"
+     ]
+    }
+   ],
+   "source": [
+    "from huggingface_hub import login\n",
+    "import json\n",
+    "\n",
+    "with open(\"config.json\", \"r\") as config_file:\n",
+    "    config = json.load(config_file)\n",
+    "    access_token = config[\"HF_ACCESS_TOKEN\"]\n",
+    "\n",
+    "login(token=access_token)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "IxGh6ZYQo0VN",
+   "metadata": {
+    "id": "IxGh6ZYQo0VN"
+   },
+   "source": [
+    "- After login via the access token, which is necessary to verify that we accepted the Llama 3 licensing terms, we can now download the tokenizer vocabulary:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 153,
+     "referenced_widgets": [
+      "dd1779b5e0484f0c9c72af34a6a3e638",
+      "2dc88f14cf83432fbfb62c914a40a9d3",
+      "f42effc8bf4b443eba7d108b69d4d417",
+      "3ea3c0f23f1746ce82685c92056ee83d",
+      "cc6d7bc9b1034e208d14ef0a2e2766cd",
+      "0f6cd37c1bf14d32922d1f24fe57f895",
+      "5cad22d53fe34dc4af4d6a2bcc0f3081",
+      "80615905cbd8495dbe72924048de5fec",
+      "9c4420d3100440f1bf217d30b5ef74c5",
+      "e98c47789e4d43e9950f6c496dc8ccea",
+      "0f61d20b92c54ce2843790b4acbd49b5"
+     ]
+    },
+    "id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
+    "outputId": "13ad9048-e4b3-4232-f2e3-ce9546738af0"
+   },
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n",
+      "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
+      "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
+      "You will be able to reuse this secret in all of your notebooks.\n",
+      "Please note that authentication is recommended but still optional to access public models or datasets.\n",
+      "  warnings.warn(\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dd1779b5e0484f0c9c72af34a6a3e638",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "tokenizer.model:   0%|          | 0.00/2.18M [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from huggingface_hub import hf_hub_download\n",
+    "\n",
+    "tokenizer_file_path = hf_hub_download(\n",
+    "    repo_id=\"meta-llama/Meta-Llama-3-8B\",\n",
+    "    filename=\"original/tokenizer.model\",\n",
+    "    local_dir=\"llama3-files\"\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "F8BH1Nk0AYCS",
+   "metadata": {
+    "id": "F8BH1Nk0AYCS"
+   },
+   "source": [
+    "- Note that for using Llama 3 files, we may need the `blobfile` package, which is used when handling datasets or models stored in cloud storage solutions like Google Cloud Storage (GCS), Azure Blob Storage, or Amazon S3\n",
+    "- You can install this dependency by uncommenting and executing the `pip` command below\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5dm6Oz7uAytV",
+   "metadata": {
+    "id": "5dm6Oz7uAytV"
+   },
+   "outputs": [],
+   "source": [
+    "# pip install blobfile"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "id": "8b8c0ce6-a6fb-4b8a-8de2-ee7bb7646fd0",
+   "metadata": {
+    "id": "8b8c0ce6-a6fb-4b8a-8de2-ee7bb7646fd0"
+   },
+   "outputs": [],
+   "source": [
+    "tokenizer = Tokenizer(tokenizer_file_path)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "NVhmFeX3pT_M",
+   "metadata": {
+    "id": "NVhmFeX3pT_M"
+   },
+   "source": [
+    "- We can now use the `generate` function to have the Llama 3 model generate new text:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
+    "outputId": "cf4637be-525c-432e-eaf8-a92e10242d2b"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort_dead aeros Ingredients başında.extension clangmissions.esp 사진 Ek Pars til DoctorsDaoеньostivan normal Ekized � Ekized � Ek rdr tık%,orgen>',\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "from previous_chapters import generate, text_to_token_ids, token_ids_to_text\n",
+    "\n",
+    "\n",
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=model,\n",
+    "    idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
+    "    max_new_tokens=30,\n",
+    "    context_size=LLAMA3_CONFIG_8B[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=0.\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "93WTtAA5paYV",
+   "metadata": {
+    "id": "93WTtAA5paYV"
+   },
+   "source": [
+    "- Of course, as we can see above, the text is nonsensical since we haven't trained the Llama 3 model yet\n",
+    "- In the next section, instead of training it ourselves, which would cost tens to hundreds of thousands of dollars, we load the pretrained weights from Meta AI"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f63cc248-1d27-4eb6-aa50-173b436652f8",
+   "metadata": {
+    "id": "f63cc248-1d27-4eb6-aa50-173b436652f8"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 4. Load pretrained weights"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "aKeN7rUfqZMI",
+   "metadata": {
+    "id": "aKeN7rUfqZMI"
+   },
+   "source": [
+    "- We are loading the [\"meta-llama/Meta-Llama-3-8B\"](https://huggingface.co/meta-llama/Meta-Llama-3-8B) base model below, which is a simple text completion model before finetuning\n",
+    "- Alternatively, you can load the instruction-finetuned and aligned [\"meta-llama/Meta-Llama-3-8B-Instruct\"](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) model by modifying the string in the next code cell accordingly\n",
+    "- Combined, the weight files are about 16 GB large"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 145,
+     "referenced_widgets": [
+      "bf1ddeaf6985478ca466b71e4724a0f9",
+      "da547372b7024322a3ff455757ee264d",
+      "5a3b5c70adf444908b29f8e206986b07",
+      "a471de0efd7b439bb809e80a95f39b35",
+      "b891846006734ff79b3f1b2306b0d1df",
+      "23ad2086ff48400aae0b3d9061cda257",
+      "7e4ece38b0034c8496fe7bc4ed5eba85",
+      "fc68351e057d47b3a0fb3bf7d0304a91",
+      "b424e3df452d4d6095549a2e2e3e7840",
+      "c3b8c70e6907463aaa21a055dbbf0487",
+      "88478778657542babae7a4be9018b6e5",
+      "058766ddf03a4148a685170ccaea1831",
+      "acd39bf9aa0e43afbfd39cf21e21c31a",
+      "beec9356d8594f1fa1dc97d239ffbbb8",
+      "965cf0c53bf74930bf967fbb157cc1b5",
+      "54b34287f3714003b86948d13a076cc4",
+      "9d08e6234835499db4ba81f52b57fe92",
+      "3ce254c8287e4c7c8bfbb7e2d36cb781",
+      "1e4ca258ea624bb59a07d1f0e14c0bd4",
+      "f3963a4f634b4ef3aed7c9eaeabca281",
+      "cba668f75df04ef9b844d6f16ea0d1a5",
+      "e5ae5853ccb440cc9be2eeebcfcdec7a",
+      "6a1b639c131a4f3383b33d7f542b558d",
+      "654b9359234f45d6810ef319119acc2e",
+      "8925c4a2fb0a451e8865a1f1319a2ecd",
+      "4bd434edb0c84777b7d8893c9525d9e9",
+      "a11b4e04e0234c1ab6b6fbccde598195",
+      "11d38236c32140c296665a41107e2a77",
+      "f15678cd373f469ba9e9fa3b09a790f2",
+      "8e86af3182ea4f9c9fa9a18b4a17195b",
+      "9e26bbe275ee49aab7af5916a40c6ba2",
+      "b0b342edc852407ca06d65684abfd81c",
+      "c6dacb418b0b4bf3aa9eecffb380f44c",
+      "aaecfb3b66644f0982be5fb4d27dd484",
+      "d13023e5cc564765bbbba2f0908c4850",
+      "dd58c67ccd42464d9300e9b97432230a",
+      "8bac15c0853b4cb286da885bec977533",
+      "f67ec3c99d9243f5a02c2ddebef6ea14",
+      "fcaec6bf58164472a7a193c0b16c0eb6",
+      "812418ee5e324ae7a2fb9e3b7c34693d",
+      "d748373c23c249d1843f77e56955f5e2",
+      "f93e1328bf9b424e98bbcd46792efb51",
+      "8fbc37f0a5804f8bb790bd82f95e7dd3",
+      "63113c4df8e6413f82bfa8ccb1cfa78d"
+     ]
+    },
+    "id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
+    "outputId": "3b5c3da6-8fe3-4654-e8bb-f8b55014a1e8"
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "bf1ddeaf6985478ca466b71e4724a0f9",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00001-of-00004.safetensors:   0%|          | 0.00/4.98G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "058766ddf03a4148a685170ccaea1831",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00002-of-00004.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6a1b639c131a4f3383b33d7f542b558d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00003-of-00004.safetensors:   0%|          | 0.00/4.92G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "aaecfb3b66644f0982be5fb4d27dd484",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00004-of-00004.safetensors:   0%|          | 0.00/1.17G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from safetensors.torch import load_file\n",
+    "\n",
+    "combined_weights = {}\n",
+    "\n",
+    "for i in range(1, 5):\n",
+    "    weights_file = hf_hub_download(\n",
+    "        repo_id=\"meta-llama/Meta-Llama-3-8B\",\n",
+    "        filename=f\"model-0000{i}-of-00004.safetensors\",\n",
+    "        local_dir=\"llama3-files\"\n",
+    "    )\n",
+    "    current_weights = load_file(weights_file)\n",
+    "    combined_weights.update(current_weights)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "-15SJ7btq2zE",
+   "metadata": {
+    "id": "-15SJ7btq2zE"
+   },
+   "source": [
+    "- The `weights` contains the following tensors (only the first 15 are shown for simplicity):"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
+    "outputId": "18fee047-bd63-48b2-f1e1-bf6dd3eebf66"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "['model.embed_tokens.weight',\n",
+       " 'model.layers.0.input_layernorm.weight',\n",
+       " 'model.layers.0.mlp.down_proj.weight',\n",
+       " 'model.layers.0.mlp.gate_proj.weight',\n",
+       " 'model.layers.0.mlp.up_proj.weight',\n",
+       " 'model.layers.0.post_attention_layernorm.weight',\n",
+       " 'model.layers.0.self_attn.k_proj.weight',\n",
+       " 'model.layers.0.self_attn.o_proj.weight',\n",
+       " 'model.layers.0.self_attn.q_proj.weight',\n",
+       " 'model.layers.0.self_attn.v_proj.weight',\n",
+       " 'model.layers.1.input_layernorm.weight',\n",
+       " 'model.layers.1.mlp.down_proj.weight',\n",
+       " 'model.layers.1.mlp.gate_proj.weight',\n",
+       " 'model.layers.1.mlp.up_proj.weight',\n",
+       " 'model.layers.1.post_attention_layernorm.weight']"
+      ]
+     },
+     "execution_count": 28,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "list(combined_weights.keys())[:15]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "UeeSpnunrDFB",
+   "metadata": {
+    "id": "UeeSpnunrDFB"
+   },
+   "source": [
+    "- The following function, modeled after the `load_weights_into_gpt` function in [chapter 5](../01_main-chapter-code/ch05.ipynb), loads the pretrained weights into our Llama 3 model:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "id": "3820e2a7-4f26-41bc-953b-f3879b0aff65",
+   "metadata": {
+    "id": "3820e2a7-4f26-41bc-953b-f3879b0aff65"
+   },
+   "outputs": [],
+   "source": [
+    "def assign(left, right, tensor_name=\"unknown\"):\n",
+    "    if left.shape != right.shape:\n",
+    "        raise ValueError(f\"Shape mismatch in tensor '{tensor_name}'. Left: {left.shape}, Right: {right.shape}\")\n",
+    "\n",
+    "    if isinstance(right, torch.Tensor):\n",
+    "        return torch.nn.Parameter(right.clone().detach())\n",
+    "    else:\n",
+    "        return torch.nn.Parameter(torch.tensor(right))\n",
+    "\n",
+    "\n",
+    "def load_weights_into_llama(model, param_config, params):\n",
+    "    model.tok_emb.weight = assign(model.tok_emb.weight, params[\"model.embed_tokens.weight\"], \"model.embed_tokens.weight\")\n",
+    "\n",
+    "    for l in range(param_config[\"n_layers\"]):\n",
+    "\n",
+    "        # Load attention weights\n",
+    "        model.trf_blocks[l].att.W_query.weight = assign(\n",
+    "            model.trf_blocks[l].att.W_query.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.q_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.q_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].att.W_key.weight = assign(\n",
+    "            model.trf_blocks[l].att.W_key.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.k_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.k_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].att.W_value.weight = assign(\n",
+    "            model.trf_blocks[l].att.W_value.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.v_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.v_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].att.out_proj.weight = assign(\n",
+    "            model.trf_blocks[l].att.out_proj.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.o_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.o_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].norm1.weight = assign(\n",
+    "            model.trf_blocks[l].norm1.weight,\n",
+    "            params[f\"model.layers.{l}.input_layernorm.weight\"],\n",
+    "            f\"model.layers.{l}.input_layernorm.weight\"\n",
+    "        )\n",
+    "\n",
+    "        # Load FeedForward weights\n",
+    "        model.trf_blocks[l].ff.fc1.weight = assign(\n",
+    "            model.trf_blocks[l].ff.fc1.weight,\n",
+    "            params[f\"model.layers.{l}.mlp.gate_proj.weight\"],\n",
+    "            f\"model.layers.{l}.mlp.gate_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].ff.fc2.weight = assign(\n",
+    "            model.trf_blocks[l].ff.fc2.weight,\n",
+    "            params[f\"model.layers.{l}.mlp.up_proj.weight\"],\n",
+    "            f\"model.layers.{l}.mlp.up_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].ff.fc3.weight = assign(\n",
+    "            model.trf_blocks[l].ff.fc3.weight,\n",
+    "            params[f\"model.layers.{l}.mlp.down_proj.weight\"],\n",
+    "            f\"model.layers.{l}.mlp.down_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].norm2.weight = assign(\n",
+    "            model.trf_blocks[l].norm2.weight,\n",
+    "            params[f\"model.layers.{l}.post_attention_layernorm.weight\"],\n",
+    "            f\"model.layers.{l}.post_attention_layernorm.weight\"\n",
+    "        )\n",
+    "\n",
+    "    # Load output layer weights\n",
+    "    model.final_norm.weight = assign(model.final_norm.weight, params[\"model.norm.weight\"], \"model.norm.weight\")\n",
+    "\n",
+    "    if \"lm_head.weight\" in params.keys():\n",
+    "        model.out_head.weight = assign(model.out_head.weight, params[\"lm_head.weight\"], \"lm_head.weight\")\n",
+    "    else:\n",
+    "        model.out_head.weight = assign(model.out_head.weight, params[\"model.embed_tokens.weight\"], \"model.embed_tokens.weight\")\n",
+    "\n",
+    "\n",
+    "load_weights_into_llama(model, LLAMA3_CONFIG_8B, combined_weights)\n",
+    "model.to(device);\n",
+    "del combined_weights  # free up memory"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "TDuv_Us2rNvk",
+   "metadata": {
+    "id": "TDuv_Us2rNvk"
+   },
+   "source": [
+    "- Next, we are ready to use the model for text generation"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "id": "240987e8-a023-462e-9376-9edfb27559ec",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "240987e8-a023-462e-9376-9edfb27559ec",
+    "outputId": "1750847d-f7b5-4065-c0ba-5a66de2f55af"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The publisher apologizes for any\n"
+     ]
+    }
+   ],
+   "source": [
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=model,\n",
+    "    idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
+    "    max_new_tokens=25,\n",
+    "    context_size=LLAMA3_CONFIG_8B[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=0.\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1203041e-4794-4157-a978-3ce80909da44",
+   "metadata": {
+    "id": "1203041e-4794-4157-a978-3ce80909da44"
+   },
+   "source": [
+    "&nbsp;\n",
+    "## 5. Using the instruction-finetuned model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "akyo7WNyF_YL",
+   "metadata": {
+    "id": "akyo7WNyF_YL"
+   },
+   "source": [
+    "- Above, we used the pretrained base model; if you want to use a model capable of following instructions, use the `\"meta-llama/Llama-3-8b-Instruct\"` model instead, as shown below"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "id": "hdA-xjjdS26J",
+   "metadata": {
+    "id": "hdA-xjjdS26J"
+   },
+   "outputs": [],
+   "source": [
+    "# to free up memory\n",
+    "\n",
+    "import gc\n",
+    "\n",
+    "del model\n",
+    "\n",
+    "gc.collect()  # Run Python garbage collector\n",
+    "\n",
+    "if torch.cuda.is_available():\n",
+    "    torch.cuda.empty_cache()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "id": "nbvAV7vaz6yc",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 145,
+     "referenced_widgets": [
+      "f2c872665b8544c3bee203e9e60eb6dd",
+      "58050a82805346bf8804637faa4aeb4a",
+      "f5e207660a9b4573ba971aae7637e3f0",
+      "f66b071c0c0c4342a9b1a38d9503dca8",
+      "74624b238f614f0088f9a0efb829b3ca",
+      "27539466da5e473f9a19aaa6c5de140f",
+      "b9469af48bbd4877ba6b5ed270355c5a",
+      "9cdc707df57a4ca1be4adf3be0b950d0",
+      "24bde7b480e14263bffcdeaf92562531",
+      "a11611e4909a4800aba37ba13df4f2d7",
+      "ad34bfe363ce4af0bcbd42fb12df1460",
+      "55db14a6cb024cfea22c78053df35c0a",
+      "a152b1fc6e7c49e587ebf77baba79e23",
+      "d85947013fca4bc79483e0e2e5923766",
+      "cc5972fcd4f045118bf28c7ae1ce01d8",
+      "ae928c125c62414e9699d75f0f1846f2",
+      "9fc39ce316da4ac6854ba0e9dfb9d819",
+      "2c743a1bba1543c798d438d2dd3f1ce3",
+      "c3b785b859434e9781cefa63eb0dfe3a",
+      "9e6fb5919cf045fbadf355135b454873",
+      "c1f74ea4e1204c1faeabe68b6671fee2",
+      "9d2da7ecec8c44e498bdf81486301b7e",
+      "7ef7486e428246a19c59e787fa6f1415",
+      "6372466b26934938a9661f5e20f350e6",
+      "c9908046591b421489833e692f425f51",
+      "d559bcac8bdf4ae981075c434047bfac",
+      "7d0e25036caf4eacb497120c33dc7ad5",
+      "c2bf75f6a3dd4de9b596f11a9b56b7f9",
+      "26f23354d91c44ca9ec6fffdd452e38e",
+      "fb147d8d88ec4da8aed51da10da1ed5c",
+      "83db099f8d1148aa93b427491efb0201",
+      "145563bea9134116b40a30604bd6886d",
+      "c0b1d3e281c14e6eb227a0ba84bbba6a",
+      "dc327439174446bc967c2db256d16cb3",
+      "1fc97013e75f494d805cd1ccef212a74",
+      "05c60759763d463f950a9865b61fbbb3",
+      "d996728044264415969aaa340fac18a7",
+      "924d4f3c78bf4c5f92841b2ee16938e3",
+      "4bf59269800c4da48974accd81a20f86",
+      "90944f0cb5814484ba54bfd463fe064f",
+      "dc3aea1e183e492090ac0df69f305aab",
+      "836eab7bad6444cf93cef3a9d6141fdb",
+      "4ea81a7a40e0483789fc7e7570ce594c",
+      "a5d04da49a054aa08068774ead126bb3"
+     ]
+    },
+    "id": "nbvAV7vaz6yc",
+    "outputId": "6b3cbcc1-befc-4a54-e4e4-098a77f2bbf9"
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f2c872665b8544c3bee203e9e60eb6dd",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00001-of-00004.safetensors:   0%|          | 0.00/4.98G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "55db14a6cb024cfea22c78053df35c0a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00002-of-00004.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7ef7486e428246a19c59e787fa6f1415",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00003-of-00004.safetensors:   0%|          | 0.00/4.92G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dc327439174446bc967c2db256d16cb3",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00004-of-00004.safetensors:   0%|          | 0.00/1.17G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "combined_weights = {}\n",
+    "\n",
+    "for i in range(1, 5):\n",
+    "    weights_file = hf_hub_download(\n",
+    "        repo_id=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
+    "        filename=f\"model-0000{i}-of-00004.safetensors\",\n",
+    "        local_dir=\"llama3-files\"\n",
+    "    )\n",
+    "    current_weights = load_file(weights_file)\n",
+    "    combined_weights.update(current_weights)\n",
+    "\n",
+    "\n",
+    "model = Llama3Model(LLAMA3_CONFIG_8B)\n",
+    "load_weights_into_llama(model, LLAMA3_CONFIG_8B, combined_weights)\n",
+    "model.to(device)\n",
+    "del combined_weights  # free up memory"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "VlH7qYVdDKQr",
+   "metadata": {
+    "id": "VlH7qYVdDKQr"
+   },
+   "source": [
+    "- Note that the Llama 3 model should ideally used with the correct prompt template that was used during finetuning (as discussed in chapter 7)\n",
+    "- Below is a wrapper class around the tokenizer based on Meta AI's Llama 3-specific [ChatFormat code](https://github.com/meta-llama/llama3/blob/11817d47e1ba7a4959b025eb1ca308572e0e3963/llama/tokenizer.py#L202) that constructs the prompt template"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "id": "4be5b481-1110-46e8-a931-3988d890cf8c",
+   "metadata": {
+    "id": "4be5b481-1110-46e8-a931-3988d890cf8c"
+   },
+   "outputs": [],
+   "source": [
+    "class ChatFormat:\n",
+    "    def __init__(self, tokenizer):\n",
+    "        self.tokenizer = tokenizer\n",
+    "\n",
+    "    def encode_header(self, message):\n",
+    "        tokens = []\n",
+    "        tokens.append(self.tokenizer.special_tokens[\"<|start_header_id|>\"])\n",
+    "        tokens.extend(self.tokenizer.encode(message[\"role\"], bos=False, eos=False))\n",
+    "        tokens.append(self.tokenizer.special_tokens[\"<|end_header_id|>\"])\n",
+    "        tokens.extend(self.tokenizer.encode(\"\\n\\n\", bos=False, eos=False))\n",
+    "        return tokens\n",
+    "\n",
+    "    def encode(self, text):\n",
+    "        message = {\n",
+    "            \"role\": \"user\",\n",
+    "            \"content\": text\n",
+    "        }\n",
+    "\n",
+    "        tokens = self.encode_header(message)\n",
+    "        tokens.extend(\n",
+    "            self.tokenizer.encode(message[\"content\"].strip(), bos=False, eos=False)\n",
+    "        )\n",
+    "        tokens.append(self.tokenizer.special_tokens[\"<|eot_id|>\"])\n",
+    "        return tokens\n",
+    "\n",
+    "    def decode(self, token_ids):\n",
+    "        return self.tokenizer.decode(token_ids)\n",
+    "\n",
+    "\n",
+    "chat_tokenizer = ChatFormat(tokenizer)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "M-dkSNvwDttN",
+   "metadata": {
+    "id": "M-dkSNvwDttN"
+   },
+   "source": [
+    "- The usage is as follows:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "id": "nwBrTGTsUNhn",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "nwBrTGTsUNhn",
+    "outputId": "587b5259-3124-46de-b13f-ef2d1662026d"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[128006, 882, 128007, 271, 9906, 4435, 0, 128009]\n"
+     ]
+    }
+   ],
+   "source": [
+    "token_ids = chat_tokenizer.encode(\"Hello World!\")\n",
+    "print(token_ids)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "id": "0fpmpVgYVTRZ",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 36
+    },
+    "id": "0fpmpVgYVTRZ",
+    "outputId": "fb24c3f2-da13-4429-e5c3-13e016d51eac"
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.google.colaboratory.intrinsic+json": {
+       "type": "string"
+      },
+      "text/plain": [
+       "'<|start_header_id|>user<|end_header_id|>\\n\\nHello World!<|eot_id|>'"
+      ]
+     },
+     "execution_count": 35,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tokenizer.decode(token_ids)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "Wo-aUGeKDvqq",
+   "metadata": {
+    "id": "Wo-aUGeKDvqq"
+   },
+   "source": [
+    "- Let's now see the Llama 3 instruction model in action:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "id": "ozGOBu6XOkEW",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "ozGOBu6XOkEW",
+    "outputId": "bae98ed7-0e6b-439d-978e-9c48710b7e25"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Llamas are herbivores, which means they primarily eat plants and plant-based foods. Here are some of the things llamas like to eat:\n",
+      "\n",
+      "1. Grass: Llamas love to graze on grass, especially in the spring and summer months.\n",
+      "2. Hay: Hay is a staple in a llama's diet. They like to eat timothy hay, alfalfa hay, and other types of hay.\n",
+      "3. Grains: Llamas may also be fed grains like oats, barley, and corn. However, grains should not make up more than 10% of a llama's diet.\n",
+      "4. Fruits and vegetables: Llamas may enjoy fruits and vegetables as treats, such as apples,\n"
+     ]
+    }
+   ],
+   "source": [
+    "import re\n",
+    "\n",
+    "\n",
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=model,\n",
+    "    idx=text_to_token_ids(\"What do llamas eat?\", chat_tokenizer).to(device),\n",
+    "    max_new_tokens=150,\n",
+    "    context_size=LLAMA3_CONFIG_8B[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=0.\n",
+    ")\n",
+    "\n",
+    "output_text = token_ids_to_text(token_ids, tokenizer)\n",
+    "\n",
+    "\n",
+    "def clean_text(text, header_end=\"assistant<|end_header_id|>\\n\\n\"):\n",
+    "    # Find the index of the first occurrence of \"<|end_header_id|>\"\n",
+    "    index = text.find(header_end)\n",
+    "\n",
+    "    if index != -1:\n",
+    "        # Return the substring starting after \"<|end_header_id|>\"\n",
+    "        return text[index + len(header_end):].strip()  # Strip removes leading/trailing whitespace\n",
+    "    else:\n",
+    "        # If the token is not found, return the original text\n",
+    "        return text\n",
+    "\n",
+    "print(\"Output text:\\n\", clean_text(output_text))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2r5JKrO-ZOHK",
+   "metadata": {
+    "id": "2r5JKrO-ZOHK"
+   },
+   "source": [
+    "&nbsp;\n",
+    "# Llama 3.1 8B"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "QiQxX0XnP_iC",
+   "metadata": {
+    "id": "QiQxX0XnP_iC"
+   },
+   "source": [
+    "- A few months after the initial Llama 3 release, Meta AI followed up with their Llama 3.1 suite of models (see the official [Introducing Llama 3.1: Our most capable models to date](https://ai.meta.com/blog/meta-llama-3-1/) announcement blog post for details)\n",
+    "- Conveniently, we can reuse our previous Llama 3 code from above to implement Llama 3.1 8B\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/llama3-to-llama31.webp\" width=\"700px\">\n",
+    "\n",
+    "- The architecture is identical, with the only change being a rescaling of the RoPE frequencies as indicated in the configuration file below\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 37,
+   "id": "X5Fg8XUHMv4M",
+   "metadata": {
+    "id": "X5Fg8XUHMv4M"
+   },
+   "outputs": [],
+   "source": [
+    "LLAMA3_CONFIG_8B = {\n",
+    "    \"vocab_size\": 128_256,   # Vocabulary size\n",
+    "    \"context_length\": 8192,  # Context length\n",
+    "    \"emb_dim\": 4096,         # Embedding dimension\n",
+    "    \"n_heads\": 32,           # Number of attention heads\n",
+    "    \"n_layers\": 32,          # Number of layers\n",
+    "    \"hidden_dim\": 14_336,    # Size of the intermediate dimension in FeedForward\n",
+    "    \"n_kv_groups\": 8,        # Key-Value groups for grouped-query attention\n",
+    "    \"rope_base\": 50_000,     # The base in RoPE's \"theta\"\n",
+    "    \"rope_freq\": None,       # Additional configuration for adjusting the RoPE frequencies\n",
+    "    \"dtype\": torch.bfloat16  # Lower-precision dtype to save memory\n",
+    "}\n",
+    "\n",
+    "LLAMA31_CONFIG_8B = {\n",
+    "    \"vocab_size\": 128_256,    # Vocabulary size\n",
+    "    \"context_length\": 8192,   # Context length\n",
+    "    \"emb_dim\": 4096,          # Embedding dimension\n",
+    "    \"n_heads\": 32,            # Number of attention heads\n",
+    "    \"n_layers\": 32,           # Number of layers\n",
+    "    \"hidden_dim\": 14_336,     # Size of the intermediate dimension in FeedForward\n",
+    "    \"n_kv_groups\": 8,         # Key-Value groups for grouped-query attention\n",
+    "    \"rope_base\": 50_000,      # The base in RoPE's \"theta\"\n",
+    "    \"dtype\": torch.bfloat16,  # Lower-precision dtype to save memory\n",
+    "    \"rope_freq\": {            # NEW: RoPE frequency scaling\n",
+    "        \"factor\": 8.0,\n",
+    "        \"low_freq_factor\": 1.0,\n",
+    "        \"high_freq_factor\": 4.0,\n",
+    "        \"original_context_length\": 8192,\n",
+    "    }\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "xa3bpMDtTdBs",
+   "metadata": {
+    "id": "xa3bpMDtTdBs"
+   },
+   "source": [
+    "- As we've seen in the code earlier, the RoPE method uses sinusoidal functions (sine and cosine) to embed positional information directly into the attention mechanism\n",
+    "- In Llama 3.1, via the additional configuration, we introduce additional adjustments to the inverse frequency calculations\n",
+    "- These adjustments influence how different frequency components contribute to the positional embeddings (a detailed explanation is a topic for another time)\n",
+    "- Let's try out the Llama 3.1 model in practice; first, we clear out the old model to free up some GPU memory"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "id": "7dUtYnNUOqhL",
+   "metadata": {
+    "id": "7dUtYnNUOqhL"
+   },
+   "outputs": [],
+   "source": [
+    "# free up memory\n",
+    "del model\n",
+    "\n",
+    "gc.collect()  # Run Python garbage collector\n",
+    "\n",
+    "if torch.cuda.is_available():\n",
+    "    torch.cuda.empty_cache()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "DbbVsll6TYWR",
+   "metadata": {
+    "id": "DbbVsll6TYWR"
+   },
+   "source": [
+    "- Next, we download the tokenizer\n",
+    "- Note that since the Llama 3.1 family is distinct from the Llama 3 family, you'd have to go to the [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) repository and acknowledge the license terms for your Hugging Face access token to work for the download\n",
+    "- Tip: For simplicity, we only load the base model below, but there's also an instruction-finetuned version you can use by replacing `\"meta-llama/Llama-3.1-8B\"` with `\"meta-llama/Llama-3.1-8B-Instruct\"`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "id": "8xDk4chtPNU4",
+   "metadata": {
+    "id": "8xDk4chtPNU4"
+   },
+   "outputs": [],
+   "source": [
+    "tokenizer_file_path = hf_hub_download(\n",
+    "    repo_id=\"meta-llama/Llama-3.1-8B\",\n",
+    "    filename=\"original/tokenizer.model\",\n",
+    "    local_dir=\"llama3-files\"\n",
+    ")\n",
+    "\n",
+    "tokenizer = Tokenizer(tokenizer_file_path)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "id": "a7l21VE4Otcs",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "a7l21VE4Otcs",
+    "outputId": "ea31712b-6678-4ad3-d246-a7e1ad7cbd66"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Total number of parameters: 8,030,261,248\n"
+     ]
+    }
+   ],
+   "source": [
+    "model = Llama3Model(LLAMA31_CONFIG_8B)\n",
+    "\n",
+    "total_params = sum(p.numel() for p in model.parameters())\n",
+    "print(f\"Total number of parameters: {total_params:,}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "id": "u4J7IxOvOyPM",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 145,
+     "referenced_widgets": [
+      "f5c112068f5a4850b6291fe85fa6ad7d",
+      "feedc809874345bd8e7954ea79c67045",
+      "2e90cedb16f3482ab0e8e59a2883d559",
+      "abda6f03955d4f019739dc2b06c3fe10",
+      "155961a28bea4e29b7e983b22570344f",
+      "83d5bfe6c1d14d799306449b82d2aa05",
+      "847bebf73639433e93c64030591fe7cb",
+      "6d1b30c011934ede879f32c3ab8b259f",
+      "54ea67e62e9a4cd78fefe661450c3389",
+      "a2f70ad00c844a99b8c18707d30e670c",
+      "054169cdf794410b8c00cc059c2cfdd3",
+      "05dd05934e164c159bd73cc015ba2d39",
+      "cfb94182fcaf4329bb3fa18241943fba",
+      "5c829a299bf84a73851449c399f44f6d",
+      "b196454543b4482884e4c74f2fd3f1ce",
+      "6cedcdd2b27f4892b865bced95516559",
+      "88b77252689f46f08d95a19dd405ad19",
+      "fa51af329d62423d86491cb2ab1b8dad",
+      "356d5a5cfe9a42839339fb59aeeec50f",
+      "9c5dc483690d45d6ad41922bde16fd02",
+      "c970327a316d4846a16be7a3ffd96b52",
+      "1ce3da98ea894053a415a2d23292784e",
+      "7c55b07c8efa4c2a97ea201f09fbeb56",
+      "d43de2dba0a84bb781cb79b57947ccb6",
+      "104c09d32366453eab0e7f18c1e77cc2",
+      "7de2d78f12974c9f944458d566b55b6e",
+      "0649cdb8c83c449f8cf9eb5e8d094659",
+      "2c7cb6e8c3ec4254b5dc5982b161f39d",
+      "4af4cd15802846f69938d00c80116788",
+      "f7375354f1044927a0f70dff97c289f9",
+      "f45f67087839412f8071fdf0fd5a9e77",
+      "d1a3f516bb0a45a7ab44c0aac4ae23f4",
+      "e23a141dbe294a7b91112eb0628c3ca6",
+      "3ec5cf160bd146f397a34d72008efabf",
+      "c2ea10cf970a4973a30bf716eb6397cf",
+      "9eeeebd4a17e4031ac51c735e9ab5f67",
+      "0987a11e19fe4ae286edba3b3f9cb1fa",
+      "f9ec37bb0a754d5eb20398a7a3f8b3c7",
+      "c5b17cf09ce4481b9e8b601ca24fe7bc",
+      "7914c5eae30842b784e3e1f453c26fde",
+      "e1117dc64c3648629ef7434e2280d1b6",
+      "5e6b266059d54265b9a62372fac06ba4",
+      "e121b62fef0f40f686ddfa24f117c9f3",
+      "987e18e93abd4a1c9eeb4ae6f0f5231c"
+     ]
+    },
+    "id": "u4J7IxOvOyPM",
+    "outputId": "8ea92361-66a9-4c45-f1c4-cdc7d322f0ba"
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f5c112068f5a4850b6291fe85fa6ad7d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00001-of-00004.safetensors:   0%|          | 0.00/4.98G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "05dd05934e164c159bd73cc015ba2d39",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00002-of-00004.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7c55b07c8efa4c2a97ea201f09fbeb56",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00003-of-00004.safetensors:   0%|          | 0.00/4.92G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3ec5cf160bd146f397a34d72008efabf",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00004-of-00004.safetensors:   0%|          | 0.00/1.17G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "combined_weights = {}\n",
+    "\n",
+    "for i in range(1, 5):\n",
+    "    weights_file = hf_hub_download(\n",
+    "        repo_id=\"meta-llama/Llama-3.1-8B\",\n",
+    "        filename=f\"model-0000{i}-of-00004.safetensors\",\n",
+    "        local_dir=\"llama3-files\"\n",
+    "    )\n",
+    "    current_weights = load_file(weights_file)\n",
+    "    combined_weights.update(current_weights)\n",
+    "\n",
+    "load_weights_into_llama(model, LLAMA31_CONFIG_8B, combined_weights)\n",
+    "model.to(device);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "id": "wJFnF8ATPbtD",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "wJFnF8ATPbtD",
+    "outputId": "b4e82f13-c8e1-4d49-d27d-6b96b1eebc17"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The publisher apologizes for any\n"
+     ]
+    }
+   ],
+   "source": [
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=model,\n",
+    "    idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
+    "    max_new_tokens=25,\n",
+    "    context_size=LLAMA31_CONFIG_8B[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=0.\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "DR9NBDUjPrDp",
+   "metadata": {
+    "id": "DR9NBDUjPrDp"
+   },
+   "source": [
+    "&nbsp;\n",
+    "# Llama 3.2 1B"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "imoxFiDzJcxk",
+   "metadata": {
+    "id": "imoxFiDzJcxk"
+   },
+   "source": [
+    "- As of this writing, Meta AI's latest models are the Llama 3.2 models announced [here](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/)\n",
+    "- The code for the Llama 3.2 text model is similar to that of Llama 3.1, except that the model has shrunk in size (there is a 1B and 3B version)\n",
+    "- The small model size of Llama 3.2 1B is quite convenient, since it can even run on many mobile devices\n",
+    "- The architectural differences between Llama 3.1 8B and Llama 3.2 1B are illustrated in the figure below"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "OL1EoXQ6TPb7",
+   "metadata": {
+    "id": "OL1EoXQ6TPb7"
+   },
+   "source": [
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/llama31-to-llama32.webp\" width=\"700px\">"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "K0KgjwCCJ9Fb",
+   "metadata": {
+    "id": "K0KgjwCCJ9Fb"
+   },
+   "source": [
+    "- As we can see based on the figure above, the main difference between the Llama 3.1 8B and Llama 3.2 1B architectures are the respective sizes\n",
+    "- A small additional change is an increased RoPE rescaling factor, which is reflected in the configuration file below"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "id": "Yv_yF3NCQTBx",
+   "metadata": {
+    "id": "Yv_yF3NCQTBx"
+   },
+   "outputs": [],
+   "source": [
+    "LLAMA31_CONFIG_8B = {\n",
+    "    \"vocab_size\": 128_256,    # Vocabulary size\n",
+    "    \"context_length\": 8192,   # Context length\n",
+    "    \"emb_dim\": 4096,          # Embedding dimension\n",
+    "    \"n_heads\": 32,            # Number of attention heads\n",
+    "    \"n_layers\": 32,           # Number of layers\n",
+    "    \"hidden_dim\": 14_336,     # Size of the intermediate dimension in FeedForward\n",
+    "    \"n_kv_groups\": 8,         # Key-Value groups for grouped-query attention\n",
+    "    \"rope_base\": 50_000,      # The base in RoPE's \"theta\"\n",
+    "    \"dtype\": torch.bfloat16,  # Lower-precision dtype to save memory\n",
+    "    \"rope_freq\": {          # RoPE frequency scaling\n",
+    "        \"factor\": 8.0,\n",
+    "        \"low_freq_factor\": 1.0,\n",
+    "        \"high_freq_factor\": 4.0,\n",
+    "        \"original_context_length\": 8192,\n",
+    "    }\n",
+    "}\n",
+    "\n",
+    "\n",
+    "LLAMA32_CONFIG_1B = {\n",
+    "    \"vocab_size\": 128_256,    # Vocabulary size\n",
+    "    \"context_length\": 8192,   # Context length\n",
+    "    \"emb_dim\": 2048,          # NEW: Half the embedding dimension\n",
+    "    \"n_heads\": 32,            # Number of attention heads\n",
+    "    \"n_layers\": 16,           # NEW: Half the number of layers\n",
+    "    \"hidden_dim\": 8192,      # NEW: Almopst half the size of the intermediate dimension in FeedForward\n",
+    "    \"n_kv_groups\": 8,         # Key-Value groups for grouped-query attention\n",
+    "    \"rope_base\": 50_000,      # The base in RoPE's \"theta\"\n",
+    "    \"dtype\": torch.bfloat16,  # Lower-precision dtype to save memory\n",
+    "    \"rope_freq\": {            # RoPE frequency scaling\n",
+    "        \"factor\": 32.0,       # NEW: Adjustment of the rescaling factor\n",
+    "        \"low_freq_factor\": 1.0,\n",
+    "        \"high_freq_factor\": 4.0,\n",
+    "        \"original_context_length\": 8192,\n",
+    "    }\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "Dl4_0EoJKKYv",
+   "metadata": {
+    "id": "Dl4_0EoJKKYv"
+   },
+   "source": [
+    "- Below, we can reuse the code from the Llama 3.1 8B section to load the Llama 3.2 1B model\n",
+    "- Again, since the Llama 3.2 family is distinct from the Llama 3.1 family, you'd have to go to the [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) repository and acknowledge the license terms for your Hugging Face access token to work for the download\n",
+    "- Tip: For simplicity, we only load the base model below, but there's also an instruction-finetuned version you can use by replacing `\"meta-llama/Llama-3.2-1B\"` with `\"meta-llama/Llama-3.2-1B-Instruct\"`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "id": "tCstHgyRRD2x",
+   "metadata": {
+    "id": "tCstHgyRRD2x"
+   },
+   "outputs": [],
+   "source": [
+    "# free up memory\n",
+    "del model\n",
+    "\n",
+    "\n",
+    "gc.collect()  # Run Python garbage collector\n",
+    "\n",
+    "if torch.cuda.is_available():\n",
+    "    torch.cuda.empty_cache()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "id": "jt8BKAHXRCPI",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 49,
+     "referenced_widgets": [
+      "db0b4112ca1c4070b6c08ae77198a07b",
+      "1795601570fa45599e28f012d7bbfea5",
+      "ec7f2c55d44e415c95fcdca659567ca2",
+      "00be0d9cc80e43d78d551b50a08b5bbf",
+      "bc506e05c702459ead566a98c17f6a34",
+      "05940cb26ce9448cb38b2e5b29e5f81b",
+      "f80e2773edfc4adcad5707c52acf3758",
+      "875451e9744b4bbd8798979adab5c6b7",
+      "44cd0fe55d62476390444f79b4e6c2b8",
+      "73228d2d2a6440bf903866f491344a7a",
+      "e083f2fa6a6a42a78923148a2c5f020f"
+     ]
+    },
+    "id": "jt8BKAHXRCPI",
+    "outputId": "2a95b5da-69f5-40ba-c180-27c8150af310"
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "db0b4112ca1c4070b6c08ae77198a07b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "tokenizer.model:   0%|          | 0.00/2.18M [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "tokenizer_file_path = hf_hub_download(\n",
+    "    repo_id=\"meta-llama/Llama-3.2-1B\",\n",
+    "    filename=\"original/tokenizer.model\",\n",
+    "    local_dir=\"llama32-files\"\n",
+    ")\n",
+    "\n",
+    "tokenizer = Tokenizer(tokenizer_file_path)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "id": "uf8KjasmRFSt",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "uf8KjasmRFSt",
+    "outputId": "8611df79-4325-4412-d191-37c8b1688bea"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Total number of parameters: 1,498,482,688\n"
+     ]
+    }
+   ],
+   "source": [
+    "model = Llama3Model(LLAMA32_CONFIG_1B)\n",
+    "\n",
+    "total_params = sum(p.numel() for p in model.parameters())\n",
+    "print(f\"Total number of parameters: {total_params:,}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "id": "9FbCIYW7RIOe",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 49,
+     "referenced_widgets": [
+      "ccfdc4a7fa274eabaaefa64867ace0d6",
+      "547c5694157c4fb9ae8411501881723c",
+      "0ae030cf92b14a5fb2404d55c9fa4944",
+      "7de0002098bd4b60b0d997bdb236e521",
+      "722ca83a4cef420bbbbc0b988e3125b4",
+      "4b3b25eed08b4cbfa9ffeb67de83a77f",
+      "07c51c1c87d9404ea4d9aef2c633b35a",
+      "524a15c1deda4984ae7f36f2d449be1e",
+      "2ccad1bf78714d488c87a1e64d00da04",
+      "28fa35b893964d45baed0b3464e554ff",
+      "3450d12fcf504f2eaa023d2596db2ece"
+     ]
+    },
+    "id": "9FbCIYW7RIOe",
+    "outputId": "01baf122-a69e-493a-99ed-39056347af51"
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ccfdc4a7fa274eabaaefa64867ace0d6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model.safetensors:   0%|          | 0.00/2.47G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "weights_file = hf_hub_download(\n",
+    "    repo_id=\"meta-llama/Llama-3.2-1B\",\n",
+    "    filename=f\"model.safetensors\",\n",
+    "    local_dir=\"llama32-files\"\n",
+    ")\n",
+    "current_weights = load_file(weights_file)\n",
+    "\n",
+    "load_weights_into_llama(model, LLAMA32_CONFIG_1B, current_weights)\n",
+    "model.to(device);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 48,
+   "id": "3kh7yrw2W4qr",
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "3kh7yrw2W4qr",
+    "outputId": "60fb608d-2903-4f1f-b7af-037d9a530d11"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort is made to ensure that the information on this website is accurate. However, we cannot guarantee that the information is accurate, complete\n"
+     ]
+    }
+   ],
+   "source": [
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=model,\n",
+    "    idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
+    "    max_new_tokens=25,\n",
+    "    context_size=LLAMA32_CONFIG_1B[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=0.\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "VO4Qf0zyW1ZC",
+   "metadata": {
+    "id": "VO4Qf0zyW1ZC"
+   },
+   "source": [
+    "&nbsp;\n",
+    "# What's next?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "CjCewpo2XPAd",
+   "metadata": {
+    "id": "CjCewpo2XPAd"
+   },
+   "source": [
+    "- This notebook concludes the conversion from GPT to Llama 3.2\n",
+    "- If you are interested in a more compact, standalone notebook, which only contains the Llama 3.2 code, check out the [standalone-llama32.ipynb](standalone-llama32.ipynb) notebook"
+   ]
+  }
+ ],
+ "metadata": {
+  "accelerator": "GPU",
+  "colab": {
+   "gpuType": "A100",
+   "provenance": []
+  },
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  },
+  "widgets": {
+   "application/vnd.jupyter.widget-state+json": {
+    "00be0d9cc80e43d78d551b50a08b5bbf": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_73228d2d2a6440bf903866f491344a7a",
+      "placeholder": "​",
+      "style": "IPY_MODEL_e083f2fa6a6a42a78923148a2c5f020f",
+      "value": " 2.18M/2.18M [00:00&lt;00:00, 127MB/s]"
+     }
+    },
+    "054169cdf794410b8c00cc059c2cfdd3": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "058766ddf03a4148a685170ccaea1831": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_acd39bf9aa0e43afbfd39cf21e21c31a",
+       "IPY_MODEL_beec9356d8594f1fa1dc97d239ffbbb8",
+       "IPY_MODEL_965cf0c53bf74930bf967fbb157cc1b5"
+      ],
+      "layout": "IPY_MODEL_54b34287f3714003b86948d13a076cc4"
+     }
+    },
+    "05940cb26ce9448cb38b2e5b29e5f81b": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "05c60759763d463f950a9865b61fbbb3": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_dc3aea1e183e492090ac0df69f305aab",
+      "max": 1168138808,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_836eab7bad6444cf93cef3a9d6141fdb",
+      "value": 1168138808
+     }
+    },
+    "05dd05934e164c159bd73cc015ba2d39": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_cfb94182fcaf4329bb3fa18241943fba",
+       "IPY_MODEL_5c829a299bf84a73851449c399f44f6d",
+       "IPY_MODEL_b196454543b4482884e4c74f2fd3f1ce"
+      ],
+      "layout": "IPY_MODEL_6cedcdd2b27f4892b865bced95516559"
+     }
+    },
+    "0649cdb8c83c449f8cf9eb5e8d094659": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "07c51c1c87d9404ea4d9aef2c633b35a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "0987a11e19fe4ae286edba3b3f9cb1fa": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_e121b62fef0f40f686ddfa24f117c9f3",
+      "placeholder": "​",
+      "style": "IPY_MODEL_987e18e93abd4a1c9eeb4ae6f0f5231c",
+      "value": " 1.17G/1.17G [00:04&lt;00:00, 235MB/s]"
+     }
+    },
+    "0ae030cf92b14a5fb2404d55c9fa4944": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_524a15c1deda4984ae7f36f2d449be1e",
+      "max": 2471645608,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_2ccad1bf78714d488c87a1e64d00da04",
+      "value": 2471645608
+     }
+    },
+    "0f61d20b92c54ce2843790b4acbd49b5": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "0f6cd37c1bf14d32922d1f24fe57f895": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "104c09d32366453eab0e7f18c1e77cc2": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_f7375354f1044927a0f70dff97c289f9",
+      "max": 4915916176,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_f45f67087839412f8071fdf0fd5a9e77",
+      "value": 4915916176
+     }
+    },
+    "11d38236c32140c296665a41107e2a77": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "145563bea9134116b40a30604bd6886d": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "155961a28bea4e29b7e983b22570344f": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "1795601570fa45599e28f012d7bbfea5": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_05940cb26ce9448cb38b2e5b29e5f81b",
+      "placeholder": "​",
+      "style": "IPY_MODEL_f80e2773edfc4adcad5707c52acf3758",
+      "value": "tokenizer.model: 100%"
+     }
+    },
+    "1ce3da98ea894053a415a2d23292784e": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "1e4ca258ea624bb59a07d1f0e14c0bd4": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "1fc97013e75f494d805cd1ccef212a74": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_4bf59269800c4da48974accd81a20f86",
+      "placeholder": "​",
+      "style": "IPY_MODEL_90944f0cb5814484ba54bfd463fe064f",
+      "value": "model-00004-of-00004.safetensors: 100%"
+     }
+    },
+    "23ad2086ff48400aae0b3d9061cda257": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "24bde7b480e14263bffcdeaf92562531": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "26f23354d91c44ca9ec6fffdd452e38e": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "27539466da5e473f9a19aaa6c5de140f": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "28fa35b893964d45baed0b3464e554ff": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "2c743a1bba1543c798d438d2dd3f1ce3": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "2c7cb6e8c3ec4254b5dc5982b161f39d": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "2ccad1bf78714d488c87a1e64d00da04": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "2dc88f14cf83432fbfb62c914a40a9d3": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_0f6cd37c1bf14d32922d1f24fe57f895",
+      "placeholder": "​",
+      "style": "IPY_MODEL_5cad22d53fe34dc4af4d6a2bcc0f3081",
+      "value": "tokenizer.model: 100%"
+     }
+    },
+    "2e90cedb16f3482ab0e8e59a2883d559": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_6d1b30c011934ede879f32c3ab8b259f",
+      "max": 4976698672,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_54ea67e62e9a4cd78fefe661450c3389",
+      "value": 4976698672
+     }
+    },
+    "3450d12fcf504f2eaa023d2596db2ece": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "356d5a5cfe9a42839339fb59aeeec50f": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "3ce254c8287e4c7c8bfbb7e2d36cb781": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "3ea3c0f23f1746ce82685c92056ee83d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_e98c47789e4d43e9950f6c496dc8ccea",
+      "placeholder": "​",
+      "style": "IPY_MODEL_0f61d20b92c54ce2843790b4acbd49b5",
+      "value": " 2.18M/2.18M [00:00&lt;00:00, 7.56MB/s]"
+     }
+    },
+    "3ec5cf160bd146f397a34d72008efabf": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_c2ea10cf970a4973a30bf716eb6397cf",
+       "IPY_MODEL_9eeeebd4a17e4031ac51c735e9ab5f67",
+       "IPY_MODEL_0987a11e19fe4ae286edba3b3f9cb1fa"
+      ],
+      "layout": "IPY_MODEL_f9ec37bb0a754d5eb20398a7a3f8b3c7"
+     }
+    },
+    "44cd0fe55d62476390444f79b4e6c2b8": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "4af4cd15802846f69938d00c80116788": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "4b3b25eed08b4cbfa9ffeb67de83a77f": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "4bd434edb0c84777b7d8893c9525d9e9": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_b0b342edc852407ca06d65684abfd81c",
+      "placeholder": "​",
+      "style": "IPY_MODEL_c6dacb418b0b4bf3aa9eecffb380f44c",
+      "value": " 4.92G/4.92G [00:24&lt;00:00, 232MB/s]"
+     }
+    },
+    "4bf59269800c4da48974accd81a20f86": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "4ea81a7a40e0483789fc7e7570ce594c": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "524a15c1deda4984ae7f36f2d449be1e": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "547c5694157c4fb9ae8411501881723c": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_4b3b25eed08b4cbfa9ffeb67de83a77f",
+      "placeholder": "​",
+      "style": "IPY_MODEL_07c51c1c87d9404ea4d9aef2c633b35a",
+      "value": "model.safetensors: 100%"
+     }
+    },
+    "54b34287f3714003b86948d13a076cc4": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "54ea67e62e9a4cd78fefe661450c3389": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "55db14a6cb024cfea22c78053df35c0a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_a152b1fc6e7c49e587ebf77baba79e23",
+       "IPY_MODEL_d85947013fca4bc79483e0e2e5923766",
+       "IPY_MODEL_cc5972fcd4f045118bf28c7ae1ce01d8"
+      ],
+      "layout": "IPY_MODEL_ae928c125c62414e9699d75f0f1846f2"
+     }
+    },
+    "58050a82805346bf8804637faa4aeb4a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_27539466da5e473f9a19aaa6c5de140f",
+      "placeholder": "​",
+      "style": "IPY_MODEL_b9469af48bbd4877ba6b5ed270355c5a",
+      "value": "model-00001-of-00004.safetensors: 100%"
+     }
+    },
+    "5a3b5c70adf444908b29f8e206986b07": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_fc68351e057d47b3a0fb3bf7d0304a91",
+      "max": 4976698672,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_b424e3df452d4d6095549a2e2e3e7840",
+      "value": 4976698672
+     }
+    },
+    "5c829a299bf84a73851449c399f44f6d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_356d5a5cfe9a42839339fb59aeeec50f",
+      "max": 4999802720,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_9c5dc483690d45d6ad41922bde16fd02",
+      "value": 4999802720
+     }
+    },
+    "5cad22d53fe34dc4af4d6a2bcc0f3081": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "5e6b266059d54265b9a62372fac06ba4": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "63113c4df8e6413f82bfa8ccb1cfa78d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "6372466b26934938a9661f5e20f350e6": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_c2bf75f6a3dd4de9b596f11a9b56b7f9",
+      "placeholder": "​",
+      "style": "IPY_MODEL_26f23354d91c44ca9ec6fffdd452e38e",
+      "value": "model-00003-of-00004.safetensors: 100%"
+     }
+    },
+    "654b9359234f45d6810ef319119acc2e": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_11d38236c32140c296665a41107e2a77",
+      "placeholder": "​",
+      "style": "IPY_MODEL_f15678cd373f469ba9e9fa3b09a790f2",
+      "value": "model-00003-of-00004.safetensors: 100%"
+     }
+    },
+    "6a1b639c131a4f3383b33d7f542b558d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_654b9359234f45d6810ef319119acc2e",
+       "IPY_MODEL_8925c4a2fb0a451e8865a1f1319a2ecd",
+       "IPY_MODEL_4bd434edb0c84777b7d8893c9525d9e9"
+      ],
+      "layout": "IPY_MODEL_a11b4e04e0234c1ab6b6fbccde598195"
+     }
+    },
+    "6cedcdd2b27f4892b865bced95516559": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "6d1b30c011934ede879f32c3ab8b259f": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "722ca83a4cef420bbbbc0b988e3125b4": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "73228d2d2a6440bf903866f491344a7a": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "74624b238f614f0088f9a0efb829b3ca": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "7914c5eae30842b784e3e1f453c26fde": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "7c55b07c8efa4c2a97ea201f09fbeb56": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_d43de2dba0a84bb781cb79b57947ccb6",
+       "IPY_MODEL_104c09d32366453eab0e7f18c1e77cc2",
+       "IPY_MODEL_7de2d78f12974c9f944458d566b55b6e"
+      ],
+      "layout": "IPY_MODEL_0649cdb8c83c449f8cf9eb5e8d094659"
+     }
+    },
+    "7d0e25036caf4eacb497120c33dc7ad5": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "7de0002098bd4b60b0d997bdb236e521": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_28fa35b893964d45baed0b3464e554ff",
+      "placeholder": "​",
+      "style": "IPY_MODEL_3450d12fcf504f2eaa023d2596db2ece",
+      "value": " 2.47G/2.47G [00:10&lt;00:00, 220MB/s]"
+     }
+    },
+    "7de2d78f12974c9f944458d566b55b6e": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_d1a3f516bb0a45a7ab44c0aac4ae23f4",
+      "placeholder": "​",
+      "style": "IPY_MODEL_e23a141dbe294a7b91112eb0628c3ca6",
+      "value": " 4.92G/4.92G [00:23&lt;00:00, 239MB/s]"
+     }
+    },
+    "7e4ece38b0034c8496fe7bc4ed5eba85": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "7ef7486e428246a19c59e787fa6f1415": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_6372466b26934938a9661f5e20f350e6",
+       "IPY_MODEL_c9908046591b421489833e692f425f51",
+       "IPY_MODEL_d559bcac8bdf4ae981075c434047bfac"
+      ],
+      "layout": "IPY_MODEL_7d0e25036caf4eacb497120c33dc7ad5"
+     }
+    },
+    "80615905cbd8495dbe72924048de5fec": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "812418ee5e324ae7a2fb9e3b7c34693d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "836eab7bad6444cf93cef3a9d6141fdb": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "83d5bfe6c1d14d799306449b82d2aa05": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "83db099f8d1148aa93b427491efb0201": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "847bebf73639433e93c64030591fe7cb": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "875451e9744b4bbd8798979adab5c6b7": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "88478778657542babae7a4be9018b6e5": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "88b77252689f46f08d95a19dd405ad19": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "8925c4a2fb0a451e8865a1f1319a2ecd": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_8e86af3182ea4f9c9fa9a18b4a17195b",
+      "max": 4915916176,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_9e26bbe275ee49aab7af5916a40c6ba2",
+      "value": 4915916176
+     }
+    },
+    "8bac15c0853b4cb286da885bec977533": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_8fbc37f0a5804f8bb790bd82f95e7dd3",
+      "placeholder": "​",
+      "style": "IPY_MODEL_63113c4df8e6413f82bfa8ccb1cfa78d",
+      "value": " 1.17G/1.17G [00:05&lt;00:00, 227MB/s]"
+     }
+    },
+    "8e86af3182ea4f9c9fa9a18b4a17195b": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "8fbc37f0a5804f8bb790bd82f95e7dd3": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "90944f0cb5814484ba54bfd463fe064f": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "924d4f3c78bf4c5f92841b2ee16938e3": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "965cf0c53bf74930bf967fbb157cc1b5": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_cba668f75df04ef9b844d6f16ea0d1a5",
+      "placeholder": "​",
+      "style": "IPY_MODEL_e5ae5853ccb440cc9be2eeebcfcdec7a",
+      "value": " 5.00G/5.00G [00:27&lt;00:00, 136MB/s]"
+     }
+    },
+    "987e18e93abd4a1c9eeb4ae6f0f5231c": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "9c4420d3100440f1bf217d30b5ef74c5": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "9c5dc483690d45d6ad41922bde16fd02": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "9cdc707df57a4ca1be4adf3be0b950d0": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "9d08e6234835499db4ba81f52b57fe92": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "9d2da7ecec8c44e498bdf81486301b7e": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "9e26bbe275ee49aab7af5916a40c6ba2": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "9e6fb5919cf045fbadf355135b454873": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "9eeeebd4a17e4031ac51c735e9ab5f67": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_e1117dc64c3648629ef7434e2280d1b6",
+      "max": 1168138808,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_5e6b266059d54265b9a62372fac06ba4",
+      "value": 1168138808
+     }
+    },
+    "9fc39ce316da4ac6854ba0e9dfb9d819": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "a11611e4909a4800aba37ba13df4f2d7": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "a11b4e04e0234c1ab6b6fbccde598195": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "a152b1fc6e7c49e587ebf77baba79e23": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_9fc39ce316da4ac6854ba0e9dfb9d819",
+      "placeholder": "​",
+      "style": "IPY_MODEL_2c743a1bba1543c798d438d2dd3f1ce3",
+      "value": "model-00002-of-00004.safetensors: 100%"
+     }
+    },
+    "a2f70ad00c844a99b8c18707d30e670c": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "a471de0efd7b439bb809e80a95f39b35": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_c3b8c70e6907463aaa21a055dbbf0487",
+      "placeholder": "​",
+      "style": "IPY_MODEL_88478778657542babae7a4be9018b6e5",
+      "value": " 4.98G/4.98G [00:30&lt;00:00, 231MB/s]"
+     }
+    },
+    "a5d04da49a054aa08068774ead126bb3": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "aaecfb3b66644f0982be5fb4d27dd484": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_d13023e5cc564765bbbba2f0908c4850",
+       "IPY_MODEL_dd58c67ccd42464d9300e9b97432230a",
+       "IPY_MODEL_8bac15c0853b4cb286da885bec977533"
+      ],
+      "layout": "IPY_MODEL_f67ec3c99d9243f5a02c2ddebef6ea14"
+     }
+    },
+    "abda6f03955d4f019739dc2b06c3fe10": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_a2f70ad00c844a99b8c18707d30e670c",
+      "placeholder": "​",
+      "style": "IPY_MODEL_054169cdf794410b8c00cc059c2cfdd3",
+      "value": " 4.98G/4.98G [00:21&lt;00:00, 234MB/s]"
+     }
+    },
+    "acd39bf9aa0e43afbfd39cf21e21c31a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_9d08e6234835499db4ba81f52b57fe92",
+      "placeholder": "​",
+      "style": "IPY_MODEL_3ce254c8287e4c7c8bfbb7e2d36cb781",
+      "value": "model-00002-of-00004.safetensors: 100%"
+     }
+    },
+    "ad34bfe363ce4af0bcbd42fb12df1460": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "ae928c125c62414e9699d75f0f1846f2": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "b0b342edc852407ca06d65684abfd81c": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "b196454543b4482884e4c74f2fd3f1ce": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_c970327a316d4846a16be7a3ffd96b52",
+      "placeholder": "​",
+      "style": "IPY_MODEL_1ce3da98ea894053a415a2d23292784e",
+      "value": " 5.00G/5.00G [00:23&lt;00:00, 233MB/s]"
+     }
+    },
+    "b424e3df452d4d6095549a2e2e3e7840": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "b891846006734ff79b3f1b2306b0d1df": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "b9469af48bbd4877ba6b5ed270355c5a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "bc506e05c702459ead566a98c17f6a34": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "beec9356d8594f1fa1dc97d239ffbbb8": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_1e4ca258ea624bb59a07d1f0e14c0bd4",
+      "max": 4999802720,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_f3963a4f634b4ef3aed7c9eaeabca281",
+      "value": 4999802720
+     }
+    },
+    "bf1ddeaf6985478ca466b71e4724a0f9": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_da547372b7024322a3ff455757ee264d",
+       "IPY_MODEL_5a3b5c70adf444908b29f8e206986b07",
+       "IPY_MODEL_a471de0efd7b439bb809e80a95f39b35"
+      ],
+      "layout": "IPY_MODEL_b891846006734ff79b3f1b2306b0d1df"
+     }
+    },
+    "c0b1d3e281c14e6eb227a0ba84bbba6a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "c1f74ea4e1204c1faeabe68b6671fee2": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "c2bf75f6a3dd4de9b596f11a9b56b7f9": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "c2ea10cf970a4973a30bf716eb6397cf": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_c5b17cf09ce4481b9e8b601ca24fe7bc",
+      "placeholder": "​",
+      "style": "IPY_MODEL_7914c5eae30842b784e3e1f453c26fde",
+      "value": "model-00004-of-00004.safetensors: 100%"
+     }
+    },
+    "c3b785b859434e9781cefa63eb0dfe3a": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "c3b8c70e6907463aaa21a055dbbf0487": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "c5b17cf09ce4481b9e8b601ca24fe7bc": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "c6dacb418b0b4bf3aa9eecffb380f44c": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "c970327a316d4846a16be7a3ffd96b52": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "c9908046591b421489833e692f425f51": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_fb147d8d88ec4da8aed51da10da1ed5c",
+      "max": 4915916176,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_83db099f8d1148aa93b427491efb0201",
+      "value": 4915916176
+     }
+    },
+    "cba668f75df04ef9b844d6f16ea0d1a5": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "cc5972fcd4f045118bf28c7ae1ce01d8": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_c1f74ea4e1204c1faeabe68b6671fee2",
+      "placeholder": "​",
+      "style": "IPY_MODEL_9d2da7ecec8c44e498bdf81486301b7e",
+      "value": " 5.00G/5.00G [00:21&lt;00:00, 248MB/s]"
+     }
+    },
+    "cc6d7bc9b1034e208d14ef0a2e2766cd": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "ccfdc4a7fa274eabaaefa64867ace0d6": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_547c5694157c4fb9ae8411501881723c",
+       "IPY_MODEL_0ae030cf92b14a5fb2404d55c9fa4944",
+       "IPY_MODEL_7de0002098bd4b60b0d997bdb236e521"
+      ],
+      "layout": "IPY_MODEL_722ca83a4cef420bbbbc0b988e3125b4"
+     }
+    },
+    "cfb94182fcaf4329bb3fa18241943fba": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_88b77252689f46f08d95a19dd405ad19",
+      "placeholder": "​",
+      "style": "IPY_MODEL_fa51af329d62423d86491cb2ab1b8dad",
+      "value": "model-00002-of-00004.safetensors: 100%"
+     }
+    },
+    "d13023e5cc564765bbbba2f0908c4850": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_fcaec6bf58164472a7a193c0b16c0eb6",
+      "placeholder": "​",
+      "style": "IPY_MODEL_812418ee5e324ae7a2fb9e3b7c34693d",
+      "value": "model-00004-of-00004.safetensors: 100%"
+     }
+    },
+    "d1a3f516bb0a45a7ab44c0aac4ae23f4": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "d43de2dba0a84bb781cb79b57947ccb6": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_2c7cb6e8c3ec4254b5dc5982b161f39d",
+      "placeholder": "​",
+      "style": "IPY_MODEL_4af4cd15802846f69938d00c80116788",
+      "value": "model-00003-of-00004.safetensors: 100%"
+     }
+    },
+    "d559bcac8bdf4ae981075c434047bfac": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_145563bea9134116b40a30604bd6886d",
+      "placeholder": "​",
+      "style": "IPY_MODEL_c0b1d3e281c14e6eb227a0ba84bbba6a",
+      "value": " 4.92G/4.92G [00:21&lt;00:00, 234MB/s]"
+     }
+    },
+    "d748373c23c249d1843f77e56955f5e2": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "d85947013fca4bc79483e0e2e5923766": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_c3b785b859434e9781cefa63eb0dfe3a",
+      "max": 4999802720,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_9e6fb5919cf045fbadf355135b454873",
+      "value": 4999802720
+     }
+    },
+    "d996728044264415969aaa340fac18a7": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_4ea81a7a40e0483789fc7e7570ce594c",
+      "placeholder": "​",
+      "style": "IPY_MODEL_a5d04da49a054aa08068774ead126bb3",
+      "value": " 1.17G/1.17G [00:04&lt;00:00, 231MB/s]"
+     }
+    },
+    "da547372b7024322a3ff455757ee264d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_23ad2086ff48400aae0b3d9061cda257",
+      "placeholder": "​",
+      "style": "IPY_MODEL_7e4ece38b0034c8496fe7bc4ed5eba85",
+      "value": "model-00001-of-00004.safetensors: 100%"
+     }
+    },
+    "db0b4112ca1c4070b6c08ae77198a07b": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_1795601570fa45599e28f012d7bbfea5",
+       "IPY_MODEL_ec7f2c55d44e415c95fcdca659567ca2",
+       "IPY_MODEL_00be0d9cc80e43d78d551b50a08b5bbf"
+      ],
+      "layout": "IPY_MODEL_bc506e05c702459ead566a98c17f6a34"
+     }
+    },
+    "dc327439174446bc967c2db256d16cb3": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_1fc97013e75f494d805cd1ccef212a74",
+       "IPY_MODEL_05c60759763d463f950a9865b61fbbb3",
+       "IPY_MODEL_d996728044264415969aaa340fac18a7"
+      ],
+      "layout": "IPY_MODEL_924d4f3c78bf4c5f92841b2ee16938e3"
+     }
+    },
+    "dc3aea1e183e492090ac0df69f305aab": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "dd1779b5e0484f0c9c72af34a6a3e638": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_2dc88f14cf83432fbfb62c914a40a9d3",
+       "IPY_MODEL_f42effc8bf4b443eba7d108b69d4d417",
+       "IPY_MODEL_3ea3c0f23f1746ce82685c92056ee83d"
+      ],
+      "layout": "IPY_MODEL_cc6d7bc9b1034e208d14ef0a2e2766cd"
+     }
+    },
+    "dd58c67ccd42464d9300e9b97432230a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_d748373c23c249d1843f77e56955f5e2",
+      "max": 1168138808,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_f93e1328bf9b424e98bbcd46792efb51",
+      "value": 1168138808
+     }
+    },
+    "e083f2fa6a6a42a78923148a2c5f020f": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "e1117dc64c3648629ef7434e2280d1b6": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "e121b62fef0f40f686ddfa24f117c9f3": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "e23a141dbe294a7b91112eb0628c3ca6": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "e5ae5853ccb440cc9be2eeebcfcdec7a": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "e98c47789e4d43e9950f6c496dc8ccea": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "ec7f2c55d44e415c95fcdca659567ca2": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_875451e9744b4bbd8798979adab5c6b7",
+      "max": 2183982,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_44cd0fe55d62476390444f79b4e6c2b8",
+      "value": 2183982
+     }
+    },
+    "f15678cd373f469ba9e9fa3b09a790f2": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "f2c872665b8544c3bee203e9e60eb6dd": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_58050a82805346bf8804637faa4aeb4a",
+       "IPY_MODEL_f5e207660a9b4573ba971aae7637e3f0",
+       "IPY_MODEL_f66b071c0c0c4342a9b1a38d9503dca8"
+      ],
+      "layout": "IPY_MODEL_74624b238f614f0088f9a0efb829b3ca"
+     }
+    },
+    "f3963a4f634b4ef3aed7c9eaeabca281": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "f42effc8bf4b443eba7d108b69d4d417": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_80615905cbd8495dbe72924048de5fec",
+      "max": 2183982,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_9c4420d3100440f1bf217d30b5ef74c5",
+      "value": 2183982
+     }
+    },
+    "f45f67087839412f8071fdf0fd5a9e77": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "f5c112068f5a4850b6291fe85fa6ad7d": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HBoxModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HBoxModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HBoxView",
+      "box_style": "",
+      "children": [
+       "IPY_MODEL_feedc809874345bd8e7954ea79c67045",
+       "IPY_MODEL_2e90cedb16f3482ab0e8e59a2883d559",
+       "IPY_MODEL_abda6f03955d4f019739dc2b06c3fe10"
+      ],
+      "layout": "IPY_MODEL_155961a28bea4e29b7e983b22570344f"
+     }
+    },
+    "f5e207660a9b4573ba971aae7637e3f0": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "FloatProgressModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "FloatProgressModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "ProgressView",
+      "bar_style": "success",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_9cdc707df57a4ca1be4adf3be0b950d0",
+      "max": 4976698672,
+      "min": 0,
+      "orientation": "horizontal",
+      "style": "IPY_MODEL_24bde7b480e14263bffcdeaf92562531",
+      "value": 4976698672
+     }
+    },
+    "f66b071c0c0c4342a9b1a38d9503dca8": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_a11611e4909a4800aba37ba13df4f2d7",
+      "placeholder": "​",
+      "style": "IPY_MODEL_ad34bfe363ce4af0bcbd42fb12df1460",
+      "value": " 4.98G/4.98G [00:21&lt;00:00, 167MB/s]"
+     }
+    },
+    "f67ec3c99d9243f5a02c2ddebef6ea14": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "f7375354f1044927a0f70dff97c289f9": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "f80e2773edfc4adcad5707c52acf3758": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "f93e1328bf9b424e98bbcd46792efb51": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "ProgressStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "ProgressStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "bar_color": null,
+      "description_width": ""
+     }
+    },
+    "f9ec37bb0a754d5eb20398a7a3f8b3c7": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "fa51af329d62423d86491cb2ab1b8dad": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "DescriptionStyleModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "DescriptionStyleModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "StyleView",
+      "description_width": ""
+     }
+    },
+    "fb147d8d88ec4da8aed51da10da1ed5c": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "fc68351e057d47b3a0fb3bf7d0304a91": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "fcaec6bf58164472a7a193c0b16c0eb6": {
+     "model_module": "@jupyter-widgets/base",
+     "model_module_version": "1.2.0",
+     "model_name": "LayoutModel",
+     "state": {
+      "_model_module": "@jupyter-widgets/base",
+      "_model_module_version": "1.2.0",
+      "_model_name": "LayoutModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/base",
+      "_view_module_version": "1.2.0",
+      "_view_name": "LayoutView",
+      "align_content": null,
+      "align_items": null,
+      "align_self": null,
+      "border": null,
+      "bottom": null,
+      "display": null,
+      "flex": null,
+      "flex_flow": null,
+      "grid_area": null,
+      "grid_auto_columns": null,
+      "grid_auto_flow": null,
+      "grid_auto_rows": null,
+      "grid_column": null,
+      "grid_gap": null,
+      "grid_row": null,
+      "grid_template_areas": null,
+      "grid_template_columns": null,
+      "grid_template_rows": null,
+      "height": null,
+      "justify_content": null,
+      "justify_items": null,
+      "left": null,
+      "margin": null,
+      "max_height": null,
+      "max_width": null,
+      "min_height": null,
+      "min_width": null,
+      "object_fit": null,
+      "object_position": null,
+      "order": null,
+      "overflow": null,
+      "overflow_x": null,
+      "overflow_y": null,
+      "padding": null,
+      "right": null,
+      "top": null,
+      "visibility": null,
+      "width": null
+     }
+    },
+    "feedc809874345bd8e7954ea79c67045": {
+     "model_module": "@jupyter-widgets/controls",
+     "model_module_version": "1.5.0",
+     "model_name": "HTMLModel",
+     "state": {
+      "_dom_classes": [],
+      "_model_module": "@jupyter-widgets/controls",
+      "_model_module_version": "1.5.0",
+      "_model_name": "HTMLModel",
+      "_view_count": null,
+      "_view_module": "@jupyter-widgets/controls",
+      "_view_module_version": "1.5.0",
+      "_view_name": "HTMLView",
+      "description": "",
+      "description_tooltip": null,
+      "layout": "IPY_MODEL_83d5bfe6c1d14d799306449b82d2aa05",
+      "placeholder": "​",
+      "style": "IPY_MODEL_847bebf73639433e93c64030591fe7cb",
+      "value": "model-00001-of-00004.safetensors: 100%"
+     }
+    }
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}

+ 12 - 2
ch05/07_gpt_to_llama/requirements-extra.txt

@@ -1,2 +1,12 @@
-huggingface_hub>=0.24.7
-sentencepiece>=0.1.99
+	modified:   ../../README.md
+	modified:   README.md
+	modified:   converting-gpt-to-llama2.ipynb
+	modified:   requirements-extra.txt
+	modified:   ../README.md
+
+Untracked files:
+  (use "git add <file>..." to include in what will be committed)
+	converting-llama2-to-llama3.ipynb
+	llama3-files/
+	llama32-files/
+	standalone-llama32.ipynb

+ 968 - 0
ch05/07_gpt_to_llama/standalone-llama32.ipynb

@@ -0,0 +1,968 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "e1b280ab-b61f-4d1a-bf7e-44e5f9ed3a5c",
+   "metadata": {},
+   "source": [
+    "<table style=\"width:100%\">\n",
+    "<tr>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<font size=\"2\">\n",
+    "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
+    "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
+    "</font>\n",
+    "</td>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
+    "</td>\n",
+    "</tr>\n",
+    "</table>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "efde77f2-6af3-4781-8597-89ecd3f41a52",
+   "metadata": {},
+   "source": [
+    "# Llama 3.2 From Scratch (A Standalone Notebook)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "55cdef4d-de59-4a65-89f9-fa2a8ef3471d",
+   "metadata": {},
+   "source": [
+    "- This notebook is purposefully minimal and focuses on the code to implement the Llama 3.2 1B and 3B LLMs\n",
+    "- For a step-by-step guide that explains the individual components and the relationship between GPT, Llama 2, and Llama 3, please see the following companion notebooks:\n",
+    "  - [Converting a From-Scratch GPT Architecture to Llama 2](converting-gpt-to-llama2.ipynb)\n",
+    "  - [Converting Llama 2 to Llama 3.2 From Scratch](converting-llama2-to-llama3.ipynb)\n",
+    "  \n",
+    " \n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/llama32.webp\" width=\"700px\">\n",
+    "  \n",
+    "  \n",
+    "- About the code:\n",
+    "  - all code is my own code, mapping the Llama 3 architecture onto the model code implemented in my [Build A Large Language Model (From Scratch)](http://mng.bz/orYv) book; the code is released under a permissive open-source Apache 2.0 license (see [LICENSE.txt](https://github.com/rasbt/LLMs-from-scratch/blob/main/LICENSE.txt))\n",
+    "  - the tokenizer code is inspired by the original [Llama 3 tokenizer code](https://github.com/meta-llama/llama3/blob/main/llama/tokenizer.py), which Meta AI used to to extends the Tiktoken GPT-4 tokenizer\n",
+    "  - the RoPE rescaling section is inspired by the [_compute_llama3_parameters function](https://github.com/huggingface/transformers/blob/5c1027bf09717f664b579e01cbb8ec3ef5aeb140/src/transformers/modeling_rope_utils.py#L329-L347) in the `transformers` library"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "beef121b-2454-4577-8b56-aa00961089cb",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# pip install -r https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/refs/heads/main/ch05/07_gpt_to_llama/requirements-extra.txt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "dd1b65a8-4301-444a-bd7c-a6f2bd1df9df",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "blobfile version: 3.0.0\n",
+      "huggingface_hub version: 0.25.1\n",
+      "tiktoken version: 0.7.0\n",
+      "torch version: 2.4.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "from importlib.metadata import version\n",
+    "\n",
+    "pkgs = [\n",
+    "    \"blobfile\",         # to download pretrained weights\n",
+    "    \"huggingface_hub\",  # to download pretrained weights\n",
+    "    \"tiktoken\",         # to implement the tokenizer\n",
+    "    \"torch\",            # to implement the model\n",
+    "]\n",
+    "for p in pkgs:\n",
+    "    print(f\"{p} version: {version(p)}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "653410a6-dd2b-4eb2-a722-23d9782e726d",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# 1. Architecture code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "82076c21-9331-4dcd-b017-42b046cf1a60",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import torch\n",
+    "import torch.nn as nn\n",
+    "\n",
+    "\n",
+    "class FeedForward(nn.Module):\n",
+    "    def __init__(self, cfg):\n",
+    "        super().__init__()\n",
+    "        self.fc1 = nn.Linear(cfg[\"emb_dim\"], cfg[\"hidden_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
+    "        self.fc2 = nn.Linear(cfg[\"emb_dim\"], cfg[\"hidden_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
+    "        self.fc3 = nn.Linear(cfg[\"hidden_dim\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
+    "\n",
+    "    def forward(self, x):\n",
+    "        x_fc1 = self.fc1(x)\n",
+    "        x_fc2 = self.fc2(x)\n",
+    "        x = nn.functional.silu(x_fc1) * x_fc2\n",
+    "        return self.fc3(x)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "4b9a346f-5826-4083-9162-abd56afc03f0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def precompute_rope_params(head_dim, theta_base=10000, context_length=4096, freq_config=None):\n",
+    "    assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
+    "\n",
+    "    # Compute the inverse frequencies\n",
+    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
+    "\n",
+    "    # Frequency adjustments\n",
+    "    if freq_config is not None:\n",
+    "        low_freq_wavelen = freq_config[\"original_context_length\"] / freq_config[\"low_freq_factor\"]\n",
+    "        high_freq_wavelen = freq_config[\"original_context_length\"] / freq_config[\"high_freq_factor\"]\n",
+    "\n",
+    "        wavelen = 2 * torch.pi / inv_freq\n",
+    "\n",
+    "        inv_freq_llama = torch.where(\n",
+    "            wavelen > low_freq_wavelen, inv_freq / freq_config[\"factor\"], inv_freq\n",
+    "        )\n",
+    "\n",
+    "        smooth_factor = (freq_config[\"original_context_length\"] / wavelen - freq_config[\"low_freq_factor\"]) / (\n",
+    "            freq_config[\"high_freq_factor\"] - freq_config[\"low_freq_factor\"]\n",
+    "        )\n",
+    "\n",
+    "        smoothed_inv_freq = (\n",
+    "            (1 - smooth_factor) * (inv_freq / freq_config[\"factor\"]) + smooth_factor * inv_freq\n",
+    "        )\n",
+    "\n",
+    "        is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)\n",
+    "        inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)\n",
+    "        inv_freq = inv_freq_llama\n",
+    "\n",
+    "    # Generate position indices\n",
+    "    positions = torch.arange(context_length)\n",
+    "\n",
+    "    # Compute the angles\n",
+    "    angles = positions[:, None] * inv_freq[None, :]  # Shape: (context_length, head_dim // 2)\n",
+    "\n",
+    "    # Expand angles to match the head_dim\n",
+    "    angles = torch.cat([angles, angles], dim=1)  # Shape: (context_length, head_dim)\n",
+    "\n",
+    "    # Precompute sine and cosine\n",
+    "    cos = torch.cos(angles)\n",
+    "    sin = torch.sin(angles)\n",
+    "\n",
+    "    return cos, sin\n",
+    "\n",
+    "\n",
+    "def compute_rope(x, cos, sin):\n",
+    "    # x: (batch_size, num_heads, seq_len, head_dim)\n",
+    "    batch_size, num_heads, seq_len, head_dim = x.shape\n",
+    "    assert head_dim % 2 == 0, \"Head dimension must be even\"\n",
+    "\n",
+    "    # Split x into first half and second half\n",
+    "    x1 = x[..., : head_dim // 2]  # First half\n",
+    "    x2 = x[..., head_dim // 2 :]  # Second half\n",
+    "\n",
+    "    # Adjust sin and cos shapes\n",
+    "    cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0)  # Shape: (1, 1, seq_len, head_dim)\n",
+    "    sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)\n",
+    "\n",
+    "    # Apply the rotary transformation\n",
+    "    rotated = torch.cat((-x2, x1), dim=-1)\n",
+    "    x_rotated = (x * cos) + (rotated * sin)\n",
+    "\n",
+    "    return x_rotated.to(dtype=x.dtype)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "e8169ab5-f976-4222-a2e1-eb1cabf267cb",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "class GroupedQueryAttention(nn.Module):\n",
+    "    def __init__(\n",
+    "            self, d_in, d_out, context_length, num_heads,\n",
+    "            num_kv_groups,\n",
+    "            rope_base=10_000,\n",
+    "            rope_config=None,\n",
+    "            dtype=None\n",
+    "        ):\n",
+    "        super().__init__()\n",
+    "        assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
+    "        assert num_heads % num_kv_groups == 0, \"num_heads must be divisible by num_kv_groups\"\n",
+    "\n",
+    "        self.d_out = d_out\n",
+    "        self.num_heads = num_heads\n",
+    "        self.head_dim = d_out // num_heads\n",
+    "\n",
+    "        self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)\n",
+    "        self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)\n",
+    "        self.num_kv_groups = num_kv_groups\n",
+    "        self.group_size = num_heads // num_kv_groups\n",
+    "\n",
+    "        self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
+    "        self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)\n",
+    "\n",
+    "        self.register_buffer(\"mask\", torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
+    "        cos, sin = precompute_rope_params(\n",
+    "            head_dim=self.head_dim,\n",
+    "            theta_base=rope_base,\n",
+    "            freq_config=rope_config,\n",
+    "            context_length=8192\n",
+    "        )\n",
+    "        self.register_buffer(\"cos\", cos)\n",
+    "        self.register_buffer(\"sin\", sin)\n",
+    "\n",
+    "    def forward(self, x):\n",
+    "        b, num_tokens, d_in = x.shape\n",
+    "\n",
+    "        queries = self.W_query(x)  # Shape: (b, num_tokens, d_out)\n",
+    "        keys = self.W_key(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)\n",
+    "        values = self.W_value(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)\n",
+    "\n",
+    "        # Reshape queries, keys, and values\n",
+    "        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
+    "        keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)\n",
+    "        values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)\n",
+    "\n",
+    "        # Transpose keys, values, and queries\n",
+    "        keys = keys.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        values = values.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        queries = queries.transpose(1, 2)  # Shape: (b, num_query_groups, num_tokens, head_dim)\n",
+    "\n",
+    "        # Apply RoPE\n",
+    "        keys = compute_rope(keys, self.cos, self.sin)\n",
+    "        queries = compute_rope(queries, self.cos, self.sin)\n",
+    "\n",
+    "        # Expand keys and values to match the number of heads\n",
+    "        # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        keys = keys.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        values = values.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)\n",
+    "        # For example, before repeat_interleave along dim=1 (query groups):\n",
+    "        #   [K1, K2]\n",
+    "        # After repeat_interleave (each query group is repeated group_size times):\n",
+    "        #   [K1, K1, K2, K2]\n",
+    "        # If we used regular repeat instead of repeat_interleave, we'd get:\n",
+    "        #   [K1, K2, K1, K2]\n",
+    "\n",
+    "        # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
+    "        # Shape: (b, num_heads, num_tokens, num_tokens)\n",
+    "        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head\n",
+    "\n",
+    "        # Original mask truncated to the number of tokens and converted to boolean\n",
+    "        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
+    "\n",
+    "        # Use the mask to fill attention scores\n",
+    "        attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
+    "\n",
+    "        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
+    "        assert keys.shape[-1] == self.head_dim\n",
+    "\n",
+    "        # Shape: (b, num_tokens, num_heads, head_dim)\n",
+    "        context_vec = (attn_weights @ values).transpose(1, 2)\n",
+    "\n",
+    "        # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
+    "        context_vec = context_vec.reshape(b, num_tokens, self.d_out)\n",
+    "        context_vec = self.out_proj(context_vec)  # optional projection\n",
+    "\n",
+    "        return context_vec"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "457cb2f8-50c1-4045-8a74-f181bfb5fea9",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "class TransformerBlock(nn.Module):\n",
+    "    def __init__(self, cfg):\n",
+    "        super().__init__()\n",
+    "        self.att =  GroupedQueryAttention(\n",
+    "            d_in=cfg[\"emb_dim\"],\n",
+    "            d_out=cfg[\"emb_dim\"],\n",
+    "            context_length=cfg[\"context_length\"],\n",
+    "            num_heads=cfg[\"n_heads\"],\n",
+    "            num_kv_groups=cfg[\"n_kv_groups\"],\n",
+    "            rope_base=cfg[\"rope_base\"],\n",
+    "            rope_config=cfg[\"rope_freq\"],\n",
+    "            dtype=cfg[\"dtype\"]\n",
+    "        )\n",
+    "        self.ff = FeedForward(cfg)\n",
+    "        self.norm1 = nn.RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
+    "        self.norm2 = nn.RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
+    "\n",
+    "    def forward(self, x):\n",
+    "        # Shortcut connection for attention block\n",
+    "        shortcut = x\n",
+    "        x = self.norm1(x)\n",
+    "        x = self.att(x.to(torch.bfloat16))   # Shape [batch_size, num_tokens, emb_size]\n",
+    "        x = x + shortcut  # Add the original input back\n",
+    "\n",
+    "        # Shortcut connection for feed-forward block\n",
+    "        shortcut = x\n",
+    "        x = self.norm2(x)\n",
+    "        x = self.ff(x.to(torch.bfloat16))\n",
+    "        x = x + shortcut  # Add the original input back\n",
+    "\n",
+    "        return x"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "e88de3e3-9f07-42cc-816b-28dbd46e96c4",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "class Llama3Model(nn.Module):\n",
+    "    def __init__(self, cfg):\n",
+    "        super().__init__()\n",
+    "        self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"])\n",
+    "\n",
+    "        self.trf_blocks = nn.Sequential(\n",
+    "            *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])])\n",
+    "\n",
+    "        self.final_norm = nn.RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
+    "        self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False, dtype=cfg[\"dtype\"])\n",
+    "\n",
+    "    def forward(self, in_idx):\n",
+    "        batch_size, seq_len = in_idx.shape\n",
+    "        tok_embeds = self.tok_emb(in_idx)\n",
+    "        x = tok_embeds\n",
+    "        x = self.trf_blocks(x)\n",
+    "        x = self.final_norm(x)\n",
+    "        logits = self.out_head(x.to(torch.bfloat16))\n",
+    "        return logits"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "be2d201f-74ad-4d63-ab9c-601b00674a48",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# 2. Initialize model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "23dea40c-fe20-4a75-be25-d6fce5863c01",
+   "metadata": {},
+   "source": [
+    "- The remainder of this notebook uses the Llama 3.2 1B model; to use the 3B model variant, just uncomment the second configuration file in the following code cell"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "caa142fa-b375-4e78-b392-2072ced666f3",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Llama 3.2 1B\n",
+    "\n",
+    "LLAMA32_CONFIG = {\n",
+    "    \"vocab_size\": 128_256,    # Vocabulary size\n",
+    "    \"context_length\": 8192,   # Context length\n",
+    "    \"emb_dim\": 2048,          # Embedding dimension\n",
+    "    \"n_heads\": 32,            # Number of attention heads\n",
+    "    \"n_layers\": 16,           # Number of layers\n",
+    "    \"hidden_dim\": 8192,      # Size of the intermediate dimension in FeedForward\n",
+    "    \"n_kv_groups\": 8,         # Key-Value groups for grouped-query attention\n",
+    "    \"rope_base\": 50_000,      # The base in RoPE's \"theta\"\n",
+    "    \"dtype\": torch.bfloat16,  # Lower-precision dtype to save memory\n",
+    "    \"rope_freq\": {            # RoPE frequency scaling\n",
+    "        \"factor\": 32.0,\n",
+    "        \"low_freq_factor\": 1.0,\n",
+    "        \"high_freq_factor\": 4.0,\n",
+    "        \"original_context_length\": 8192,\n",
+    "    }\n",
+    "}\n",
+    "\n",
+    "# Llama 3.2 3B\n",
+    "\n",
+    "# LLAMA32_CONFIG = {\n",
+    "#     \"vocab_size\": 128_256,    # Vocabulary size\n",
+    "#     \"context_length\": 8192,   # Context length\n",
+    "#     \"emb_dim\": 3072,          # Embedding dimension\n",
+    "#     \"n_heads\": 24,            # Number of attention heads\n",
+    "#     \"n_layers\": 28,           # Number of layers\n",
+    "#     \"hidden_dim\": 8192,      # Size of the intermediate dimension in FeedForward\n",
+    "#     \"n_kv_groups\": 8,         # Key-Value groups for grouped-query attention\n",
+    "#     \"rope_base\": 50_000,      # The base in RoPE's \"theta\"\n",
+    "#     \"dtype\": torch.bfloat16,  # Lower-precision dtype to save memory\n",
+    "#     \"rope_freq\": {            # RoPE frequency scaling\n",
+    "#         \"factor\": 32.0,\n",
+    "#         \"low_freq_factor\": 1.0,\n",
+    "#         \"high_freq_factor\": 4.0,\n",
+    "#         \"original_context_length\": 8192,\n",
+    "#     }\n",
+    "# }\n",
+    "\n",
+    "LLAMA_SIZE_STR = \"1B\" if LLAMA32_CONFIG[\"emb_dim\"] == 2048 else \"3B\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "156253fe-aacd-4da2-8f13-705f05c4b11e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "model = Llama3Model(LLAMA32_CONFIG)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "364e76ca-52f8-4fa5-af37-c4069f9694bc",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Total number of parameters: 1,498,482,688\n"
+     ]
+    }
+   ],
+   "source": [
+    "total_params = sum(p.numel() for p in model.parameters())\n",
+    "print(f\"Total number of parameters: {total_params:,}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "fd5efb03-5a07-46e8-8607-93ed47549d2b",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "float32 (PyTorch default): 15.23 GB\n",
+      "bfloat16: 7.61 GB\n"
+     ]
+    }
+   ],
+   "source": [
+    "def model_memory_size(model, input_dtype=torch.float32):\n",
+    "    total_params = 0\n",
+    "    total_grads = 0\n",
+    "    for param in model.parameters():\n",
+    "        # Calculate total number of elements per parameter\n",
+    "        param_size = param.numel()\n",
+    "        total_params += param_size\n",
+    "        # Check if gradients are stored for this parameter\n",
+    "        if param.requires_grad:\n",
+    "            total_grads += param_size\n",
+    "\n",
+    "    # Calculate buffer size (non-parameters that require memory)\n",
+    "    total_buffers = sum(buf.numel() for buf in model.buffers())\n",
+    "\n",
+    "    # Size in bytes = (Number of elements) * (Size of each element in bytes)\n",
+    "    # We assume parameters and gradients are stored in the same type as input dtype\n",
+    "    element_size = torch.tensor(0, dtype=input_dtype).element_size()\n",
+    "    total_memory_bytes = (total_params + total_grads + total_buffers) * element_size\n",
+    "\n",
+    "    # Convert bytes to gigabytes\n",
+    "    total_memory_gb = total_memory_bytes / (1024**3)\n",
+    "\n",
+    "    return total_memory_gb\n",
+    "\n",
+    "print(f\"float32 (PyTorch default): {model_memory_size(model, input_dtype=torch.float32):.2f} GB\")\n",
+    "print(f\"bfloat16: {model_memory_size(model, input_dtype=torch.bfloat16):.2f} GB\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "31f12baf-f79b-499f-85c0-51328a6a20f5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "if torch.cuda.is_available():\n",
+    "    device = torch.device(\"cuda\")\n",
+    "elif torch.backends.mps.is_available():\n",
+    "    device = torch.device(\"mps\")\n",
+    "else:\n",
+    "    device = torch.device(\"cpu\")\n",
+    "\n",
+    "model.to(device);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "78e091e1-afa8-4d23-9aea-cced86181bfd",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# 3. Load tokenizer"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "9482b01c-49f9-48e4-ab2c-4a4c75240e77",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "from pathlib import Path\n",
+    "\n",
+    "import tiktoken\n",
+    "from tiktoken.load import load_tiktoken_bpe\n",
+    "\n",
+    "\n",
+    "class Tokenizer:\n",
+    "    def __init__(self, model_path):\n",
+    "        assert os.path.isfile(model_path), f\"Model file {model_path} not found\"\n",
+    "        mergeable_ranks = load_tiktoken_bpe(model_path)\n",
+    "        num_base_tokens = len(mergeable_ranks)\n",
+    "\n",
+    "        self.special_tokens = {\n",
+    "            \"<|begin_of_text|>\": 128000,\n",
+    "            \"<|end_of_text|>\": 128001,\n",
+    "            \"<|start_header_id|>\": 128006,\n",
+    "            \"<|end_header_id|>\": 128007,\n",
+    "            \"<|eot_id|>\": 128009,\n",
+    "        }\n",
+    "        self.special_tokens.update({\n",
+    "            f\"<|reserved_{i}|>\": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values()\n",
+    "        })\n",
+    "\n",
+    "        self.model = tiktoken.Encoding(\n",
+    "            name=Path(model_path).name,\n",
+    "            pat_str=r\"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+\",\n",
+    "            mergeable_ranks=mergeable_ranks,\n",
+    "            special_tokens=self.special_tokens\n",
+    "        )\n",
+    "\n",
+    "\n",
+    "    def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()):\n",
+    "        if bos:\n",
+    "            tokens = [self.special_tokens[\"<|begin_of_text|>\"]]\n",
+    "        else:\n",
+    "            tokens = []\n",
+    "\n",
+    "        tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)\n",
+    "\n",
+    "        if eos:\n",
+    "            tokens.append(self.special_tokens[\"<|end_of_text|>\"])\n",
+    "        return tokens\n",
+    "\n",
+    "    def decode(self, tokens):\n",
+    "        return self.model.decode(tokens)\n",
+    "    \n",
+    "\n",
+    "class ChatFormat:\n",
+    "    def __init__(self, tokenizer):\n",
+    "        self.tokenizer = tokenizer\n",
+    "\n",
+    "    def encode_header(self, message):\n",
+    "        tokens = []\n",
+    "        tokens.append(self.tokenizer.special_tokens[\"<|start_header_id|>\"])\n",
+    "        tokens.extend(self.tokenizer.encode(message[\"role\"], bos=False, eos=False))\n",
+    "        tokens.append(self.tokenizer.special_tokens[\"<|end_header_id|>\"])\n",
+    "        tokens.extend(self.tokenizer.encode(\"\\n\\n\", bos=False, eos=False))\n",
+    "        return tokens\n",
+    "\n",
+    "    def encode(self, text):\n",
+    "        message = {\n",
+    "            \"role\": \"user\",\n",
+    "            \"content\": text\n",
+    "        }\n",
+    "\n",
+    "        tokens = self.encode_header(message)\n",
+    "        tokens.extend(\n",
+    "            self.tokenizer.encode(message[\"content\"].strip(), bos=False, eos=False)\n",
+    "        )\n",
+    "        tokens.append(self.tokenizer.special_tokens[\"<|eot_id|>\"])\n",
+    "        return tokens\n",
+    "\n",
+    "    def decode(self, token_ids):\n",
+    "        return self.tokenizer.decode(token_ids)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b771b60c-c198-4b30-bf10-42031197ae86",
+   "metadata": {},
+   "source": [
+    "- Please note that Meta AI requires that you accept the Llama 3,2 licensing terms before you can download the files; to do this, you have to create a Hugging Face Hub account and visit the [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) repository to accept the terms\n",
+    "- Next, you will need to create an access token; to generate an access token with READ permissions, click on the profile picture in the upper right and click on \"Settings\"\n",
+    "\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/settings.webp?1\" width=\"300px\">\n",
+    "\n",
+    "- Then, create and copy the access token so you can copy & paste it into the next code cell\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/access-token.webp?1\" width=\"600px\">"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "edcc384a-adb7-43f6-acc3-ebe4b182ec91",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from huggingface_hub import login\n",
+    "\n",
+    "login()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "986bc1a0-804f-4154-80f8-44cefbee1368",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from huggingface_hub import hf_hub_download\n",
+    "\n",
+    "tokenizer_file_path = hf_hub_download(\n",
+    "    repo_id=f\"meta-llama/Llama-3.2-{LLAMA_SIZE_STR}-Instruct\",\n",
+    "    filename=\"original/tokenizer.model\",\n",
+    "    local_dir=\"llama32-files\"\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "f5a3014f-4c66-4fe2-874e-7b57562c49ad",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "tokenizer = Tokenizer(tokenizer_file_path)\n",
+    "chat_tokenizer = ChatFormat(tokenizer)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c172f89f-d301-439f-b809-46169e5f5945",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# 4. Load pretrained weights"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "75166128-5899-4995-9b88-9672e135650e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def assign(left, right, tensor_name=\"unknown\"):\n",
+    "    if left.shape != right.shape:\n",
+    "        raise ValueError(f\"Shape mismatch in tensor '{tensor_name}'. Left: {left.shape}, Right: {right.shape}\")\n",
+    "\n",
+    "    if isinstance(right, torch.Tensor):\n",
+    "        return torch.nn.Parameter(right.clone().detach())\n",
+    "    else:\n",
+    "        return torch.nn.Parameter(torch.tensor(right))\n",
+    "\n",
+    "\n",
+    "def load_weights_into_llama(model, param_config, params):\n",
+    "    model.tok_emb.weight = assign(model.tok_emb.weight, params[\"model.embed_tokens.weight\"], \"model.embed_tokens.weight\")\n",
+    "\n",
+    "    for l in range(param_config[\"n_layers\"]):\n",
+    "\n",
+    "        # Load attention weights\n",
+    "        model.trf_blocks[l].att.W_query.weight = assign(\n",
+    "            model.trf_blocks[l].att.W_query.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.q_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.q_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].att.W_key.weight = assign(\n",
+    "            model.trf_blocks[l].att.W_key.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.k_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.k_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].att.W_value.weight = assign(\n",
+    "            model.trf_blocks[l].att.W_value.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.v_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.v_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].att.out_proj.weight = assign(\n",
+    "            model.trf_blocks[l].att.out_proj.weight,\n",
+    "            params[f\"model.layers.{l}.self_attn.o_proj.weight\"],\n",
+    "            f\"model.layers.{l}.self_attn.o_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].norm1.weight = assign(\n",
+    "            model.trf_blocks[l].norm1.weight,\n",
+    "            params[f\"model.layers.{l}.input_layernorm.weight\"],\n",
+    "            f\"model.layers.{l}.input_layernorm.weight\"\n",
+    "        )\n",
+    "\n",
+    "        # Load FeedForward weights\n",
+    "        model.trf_blocks[l].ff.fc1.weight = assign(\n",
+    "            model.trf_blocks[l].ff.fc1.weight,\n",
+    "            params[f\"model.layers.{l}.mlp.gate_proj.weight\"],\n",
+    "            f\"model.layers.{l}.mlp.gate_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].ff.fc2.weight = assign(\n",
+    "            model.trf_blocks[l].ff.fc2.weight,\n",
+    "            params[f\"model.layers.{l}.mlp.up_proj.weight\"],\n",
+    "            f\"model.layers.{l}.mlp.up_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].ff.fc3.weight = assign(\n",
+    "            model.trf_blocks[l].ff.fc3.weight,\n",
+    "            params[f\"model.layers.{l}.mlp.down_proj.weight\"],\n",
+    "            f\"model.layers.{l}.mlp.down_proj.weight\"\n",
+    "        )\n",
+    "        model.trf_blocks[l].norm2.weight = assign(\n",
+    "            model.trf_blocks[l].norm2.weight,\n",
+    "            params[f\"model.layers.{l}.post_attention_layernorm.weight\"],\n",
+    "            f\"model.layers.{l}.post_attention_layernorm.weight\"\n",
+    "        )\n",
+    "\n",
+    "    # Load output layer weights\n",
+    "    model.final_norm.weight = assign(model.final_norm.weight, params[\"model.norm.weight\"], \"model.norm.weight\")\n",
+    "\n",
+    "    if \"lm_head.weight\" in params.keys():\n",
+    "        model.out_head.weight = assign(model.out_head.weight, params[\"lm_head.weight\"], \"lm_head.weight\")\n",
+    "    else:\n",
+    "        model.out_head.weight = assign(model.out_head.weight, params[\"model.embed_tokens.weight\"], \"model.embed_tokens.weight\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "699cb1b8-a67d-49fb-80a6-0dad9d81f392",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from safetensors.torch import load_file\n",
+    "\n",
+    "\n",
+    "if LLAMA_SIZE_STR == \"1B\":\n",
+    "    weights_file = hf_hub_download(\n",
+    "        repo_id=f\"meta-llama/Llama-3.2-{LLAMA_SIZE_STR}-Instruct\",\n",
+    "        filename=f\"model.safetensors\",\n",
+    "        local_dir=\"llama32-files\"\n",
+    "    )\n",
+    "    combined_weights = load_file(weights_file)\n",
+    "\n",
+    "\n",
+    "else:\n",
+    "    combined_weights = {}\n",
+    "    for i in range(1, 5):\n",
+    "        weights_file = hf_hub_download(\n",
+    "            repo_id=f\"meta-llama/Llama-3.2-{LLAMA_SIZE_STR}-Instruct\",\n",
+    "            filename=f\"model-0000{i}-of-00002.safetensors\",\n",
+    "            local_dir=\"llama3-files\"\n",
+    "        )\n",
+    "        current_weights = load_file(weights_file)\n",
+    "        combined_weights.update(current_weights)\n",
+    "    \n",
+    "\n",
+    "load_weights_into_llama(model, LLAMA32_CONFIG, combined_weights)\n",
+    "model.to(device);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "57d07df1-4401-4792-b549-7c4cc5632323",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# 5. Generate text"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "7b8401c6-e244-4cb7-9849-2ba71ce758d5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def text_to_token_ids(text, tokenizer):\n",
+    "    encoded = tokenizer.encode(text)\n",
+    "    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension\n",
+    "    return encoded_tensor\n",
+    "\n",
+    "\n",
+    "def token_ids_to_text(token_ids, tokenizer):\n",
+    "    flat = token_ids.squeeze(0)  # remove batch dimension\n",
+    "    return tokenizer.decode(flat.tolist())\n",
+    "\n",
+    "\n",
+    "def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):\n",
+    "\n",
+    "    # For-loop is the same as before: Get logits, and only focus on last time step\n",
+    "    for _ in range(max_new_tokens):\n",
+    "        idx_cond = idx[:, -context_size:]\n",
+    "        with torch.no_grad():\n",
+    "            logits = model(idx_cond)\n",
+    "        logits = logits[:, -1, :]\n",
+    "\n",
+    "        # New: Filter logits with top_k sampling\n",
+    "        if top_k is not None:\n",
+    "            # Keep only top_k values\n",
+    "            top_logits, _ = torch.topk(logits, top_k)\n",
+    "            min_val = top_logits[:, -1]\n",
+    "            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)\n",
+    "\n",
+    "        # New: Apply temperature scaling\n",
+    "        if temperature > 0.0:\n",
+    "            logits = logits / temperature\n",
+    "\n",
+    "            # Apply softmax to get probabilities\n",
+    "            probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)\n",
+    "\n",
+    "            # Sample from the distribution\n",
+    "            idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)\n",
+    "\n",
+    "        # Otherwise same as before: get idx of the vocab entry with the highest logits value\n",
+    "        else:\n",
+    "            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)\n",
+    "\n",
+    "        if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified\n",
+    "            break\n",
+    "\n",
+    "        # Same as before: append sampled index to the running sequence\n",
+    "        idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)\n",
+    "\n",
+    "    return idx"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "1c7a04fa-6aac-416b-8f63-f1e19227633d",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Llamas are herbivores, which means they primarily eat plants and plant-based foods. Their diet typically consists of:\n",
+      "\n",
+      "1. Grasses: Llamas love to graze on various types of grasses, including tall grasses and short grasses.\n",
+      "2. Hay: Llamas also eat hay, which is a dry, compressed form of grass or other plants.\n",
+      "3. Alfalfa: Alfalfa is a legume that is commonly fed to llamas, as it is high in protein and fiber.\n",
+      "4. Other plants: Llamas will also eat other plants, such as clover, wild grasses, and shrubs.\n",
+      "\n",
+      "It's worth noting that llamas are adapted to high altitudes and\n"
+     ]
+    }
+   ],
+   "source": [
+    "import re\n",
+    "\n",
+    "\n",
+    "PROMPT = \"What do llamas eat?\"\n",
+    "\n",
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=model,\n",
+    "    idx=text_to_token_ids(PROMPT, chat_tokenizer).to(device),\n",
+    "    max_new_tokens=150,\n",
+    "    context_size=LLAMA32_CONFIG[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=0.\n",
+    ")\n",
+    "\n",
+    "output_text = token_ids_to_text(token_ids, tokenizer)\n",
+    "\n",
+    "\n",
+    "def clean_text(text, header_end=\"assistant<|end_header_id|>\\n\\n\"):\n",
+    "    # Find the index of the first occurrence of \"<|end_header_id|>\"\n",
+    "    index = text.find(header_end)\n",
+    "\n",
+    "    if index != -1:\n",
+    "        # Return the substring starting after \"<|end_header_id|>\"\n",
+    "        return text[index + len(header_end):].strip()  # Strip removes leading/trailing whitespace\n",
+    "    else:\n",
+    "        # If the token is not found, return the original text\n",
+    "        return text\n",
+    "\n",
+    "print(\"Output text:\\n\", clean_text(output_text))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "549324d6-5c71-4147-ae21-2e67675faa3d",
+   "metadata": {},
+   "source": [
+    "&nbsp;\n",
+    "# What's next?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e6edaaae-2de1-406c-8ffa-897cdfa3808c",
+   "metadata": {},
+   "source": [
+    "- The notebook was kept purposefully minimal; if you are interested in additional explanation about the individual components, check out the following two companion notebooks:\n",
+    "\n",
+    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/gpt-and-all-llamas.webp\">\n",
+    "\n",
+    "  1. [Converting a From-Scratch GPT Architecture to Llama 2](converting-gpt-to-llama2.ipynb)\n",
+    "  2. [Converting Llama 2 to Llama 3.2 From Scratch](converting-llama2-to-llama3.ipynb)\n",
+    "  \n",
+    "- For those interested in a comprehensive guide on building a large language model from scratch and gaining a deeper understanding of its mechanics, you might like my [Build a Large Language Model (From Scratch)](http://mng.bz/orYv)\n",
+    "\n",
+    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bf864c28-2ce1-44bf-84e4-c0671f494d62",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}