|
|
@@ -231,7 +231,7 @@
|
|
|
" # Apply the calculated learning rate to the optimizer\n",
|
|
|
" for param_group in optimizer.param_groups:\n",
|
|
|
" param_group[\"lr\"] = lr\n",
|
|
|
- " track_lrs.append(optimizer.param_groups[0][\"lr\"])\n",
|
|
|
+ " track_lrs.append(optimizer.defaults[\"lr\"])\n",
|
|
|
" \n",
|
|
|
" # Calculate loss and update weights\n",
|
|
|
" # ..."
|
|
|
@@ -318,7 +318,7 @@
|
|
|
" # Apply the calculated learning rate to the optimizer\n",
|
|
|
" for param_group in optimizer.param_groups:\n",
|
|
|
" param_group[\"lr\"] = lr\n",
|
|
|
- " track_lrs.append(optimizer.param_groups[0][\"lr\"])\n",
|
|
|
+ " track_lrs.append(optimizer.defaults[\"lr\"])\n",
|
|
|
" \n",
|
|
|
" # Calculate loss and update weights"
|
|
|
]
|
|
|
@@ -529,7 +529,7 @@
|
|
|
" tokens_seen, global_step = 0, -1\n",
|
|
|
"\n",
|
|
|
" # Retrieve the maximum learning rate from the optimizer\n",
|
|
|
- " peak_lr = optimizer.param_groups[0][\"lr\"]\n",
|
|
|
+ " peak_lr = optimizer.defaults[\"lr\"]\n",
|
|
|
"\n",
|
|
|
" # Calculate the total number of iterations in the training process\n",
|
|
|
" total_training_steps = len(train_loader) * n_epochs\n",
|
|
|
@@ -780,7 +780,7 @@
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython3",
|
|
|
- "version": "3.10.6"
|
|
|
+ "version": "3.11.4"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|