|
|
@@ -660,7 +660,7 @@
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
- "from gpt_generate import assign, load_weights_into_gpt\n",
|
|
|
+ "from gpt_generate import load_weights_into_gpt\n",
|
|
|
"\n",
|
|
|
"\n",
|
|
|
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
|
|
@@ -788,10 +788,10 @@
|
|
|
"NEW_CONFIG.update({\"context_length\": 1024, \"qkv_bias\": True})\n",
|
|
|
"\n",
|
|
|
"gpt = GPTModel(NEW_CONFIG)\n",
|
|
|
- "gpt.eval();\n",
|
|
|
+ "gpt.eval()\n",
|
|
|
"\n",
|
|
|
"load_weights_into_gpt(gpt, params)\n",
|
|
|
- "gpt.to(device);\n",
|
|
|
+ "gpt.to(device)\n",
|
|
|
"\n",
|
|
|
"torch.manual_seed(123)\n",
|
|
|
"train_loss = calc_loss_loader(train_loader, gpt, device)\n",
|
|
|
@@ -816,7 +816,7 @@
|
|
|
"source": [
|
|
|
"In the main chapter, we experimented with the smallest GPT-2 model, which has only 124M parameters. The reason was to keep the resource requirements as low as possible. However, you can easily experiment with larger models with minimal code changes. For example, instead of loading the 1558M instead of 124M model in chapter 5, the only 2 lines of code that we have to change are\n",
|
|
|
"\n",
|
|
|
- "```\n",
|
|
|
+ "```python\n",
|
|
|
"settings, params = download_and_load_gpt2(model_size=\"124M\", models_dir=\"gpt2\")\n",
|
|
|
"model_name = \"gpt2-small (124M)\"\n",
|
|
|
"```\n",
|
|
|
@@ -824,7 +824,7 @@
|
|
|
"The updated code becomes\n",
|
|
|
"\n",
|
|
|
"\n",
|
|
|
- "```\n",
|
|
|
+ "```python\n",
|
|
|
"settings, params = download_and_load_gpt2(model_size=\"1558M\", models_dir=\"gpt2\")\n",
|
|
|
"model_name = \"gpt2-xl (1558M)\"\n",
|
|
|
"```"
|
|
|
@@ -907,8 +907,7 @@
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
- "from gpt_generate import generate, text_to_token_ids, token_ids_to_text\n",
|
|
|
- "from previous_chapters import generate_text_simple"
|
|
|
+ "from gpt_generate import generate, text_to_token_ids, token_ids_to_text"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
@@ -958,7 +957,7 @@
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython3",
|
|
|
- "version": "3.10.6"
|
|
|
+ "version": "3.10.11"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|