فهرست منبع

Einsum multi-head attention (#345)

* Einsum multi-head attention

* update diff
Sebastian Raschka 1 سال پیش
والد
کامیت
ad12c8da06

+ 22 - 1
ch03/02_bonus_efficient-multihead-attention/README.md

@@ -2,4 +2,25 @@
 
 - [mha-implementations.ipynb](mha-implementations.ipynb) contains and compares different implementations of multi-head attention
 
-<a href="mha-implementations.ipynb"><img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/mha-benchmark/mha-comparison.webp" width="500px"></a>
+
+
+### Summary
+
+The figures below summarize the performance benchmarks (lower is better).
+
+
+&nbsp;
+#### Forward pass only
+
+<a href="mha-implementations.ipynb"><img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/mha-benchmark/1_forward-only.webp?1" width="500px"></a>
+
+&nbsp;
+#### Forward and backward pass
+
+<a href="mha-implementations.ipynb"><img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/mha-benchmark/2_forward-and-backward.webp?1" width="500px"></a>
+
+&nbsp;
+#### Forward and backward pass after compilation
+
+<a href="mha-implementations.ipynb"><img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/mha-benchmark/3_forward-and-backward-compiled.webp?1" width="500px"></a>
+

+ 0 - 108
ch03/02_bonus_efficient-multihead-attention/ch03.py

@@ -1,108 +0,0 @@
-# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
-# Source for "Build a Large Language Model From Scratch"
-#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
-# Code: https://github.com/rasbt/LLMs-from-scratch
-#
-# This file contains the relevant code from chapter 3 that is going to be used
-# in forthcoming chapters.
-
-import torch
-import torch.nn as nn
-
-
-class CausalAttention(nn.Module):
-
-    def __init__(self, d_in, d_out, context_length, dropout, qkv_bias=False):
-        super().__init__()
-        self.d_out = d_out
-        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
-        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
-        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
-        self.dropout = nn.Dropout(dropout)  # New
-        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))  # New
-
-    def forward(self, x):
-        b, num_tokens, d_in = x.shape  # New batch dimension b
-        keys = self.W_key(x)
-        queries = self.W_query(x)
-        values = self.W_value(x)
-
-        attn_scores = queries @ keys.transpose(1, 2)  # Changed transpose
-        attn_scores.masked_fill_(  # New, _ ops are in-place
-            self.mask.bool()[:num_tokens, :num_tokens], -torch.inf)
-        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
-        attn_weights = self.dropout(attn_weights)  # New
-
-        context_vec = attn_weights @ values
-        return context_vec
-
-
-class MultiHeadAttentionWrapper(nn.Module):
-
-    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
-        super().__init__()
-        self.heads = nn.ModuleList(
-            [CausalAttention(d_in, d_out, context_length, dropout, qkv_bias)
-             for _ in range(num_heads)]
-        )
-        self.out_proj = nn.Linear(d_out*num_heads, d_out*num_heads)
-
-    def forward(self, x):
-        context_vec = torch.cat([head(x) for head in self.heads], dim=-1)
-        return self.out_proj(context_vec)
-
-
-class MultiHeadAttention(nn.Module):
-    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
-        super().__init__()
-        assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
-
-        self.d_out = d_out
-        self.num_heads = num_heads
-        self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
-
-        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
-        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
-        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
-        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
-        self.dropout = nn.Dropout(dropout)
-        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
-
-    def forward(self, x):
-        b, num_tokens, d_in = x.shape
-
-        keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
-        queries = self.W_query(x)
-        values = self.W_value(x)
-
-        # We implicitly split the matrix by adding a `num_heads` dimension
-        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
-        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
-        values = values.view(b, num_tokens, self.num_heads, self.head_dim)
-        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
-
-        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
-        keys = keys.transpose(1, 2)
-        queries = queries.transpose(1, 2)
-        values = values.transpose(1, 2)
-
-        # Compute scaled dot-product attention (aka self-attention) with a causal mask
-        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
-
-        # Original mask truncated to the number of tokens and converted to boolean
-        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
-
-        # Use the mask to fill attention scores
-        attn_scores.masked_fill_(mask_bool, -torch.inf)
-
-        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
-        attn_weights = self.dropout(attn_weights)
-
-        # Shape: (b, num_tokens, num_heads, head_dim)
-        context_vec = (attn_weights @ values).transpose(1, 2)
-
-        # Combine heads, where self.d_out = self.num_heads * self.head_dim
-        context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
-        context_vec = self.out_proj(context_vec)  # optional projection
-
-        return context_vec

تفاوت فایلی نمایش داده نمی شود زیرا این فایل بسیار بزرگ است
+ 420 - 88
ch03/02_bonus_efficient-multihead-attention/mha-implementations.ipynb


برخی فایل ها در این مقایسه diff نمایش داده نمی شوند زیرا تعداد فایل ها بسیار زیاد است