|
@@ -0,0 +1,168 @@
|
|
|
|
|
+{
|
|
|
|
|
+ "cells": [
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "ba450fb1-8a26-4894-ab7a-5d7bfefe90ce",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "<font size=\"1\">\n",
|
|
|
|
|
+ "Supplementary code for \"Build a Large Language Model From Scratch\": <a href=\"https://www.manning.com/books/build-a-large-language-model-from-scratch\">https://www.manning.com/books/build-a-large-language-model-from-scratch</a> by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
|
|
|
|
|
+ "Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
|
|
|
|
|
+ "</font>"
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "51c9672d-8d0c-470d-ac2d-1271f8ec3f14",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "# Chapter 6 Exercise solutions"
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "5fea8be3-30a1-4623-a6d7-b095c6c1092e",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "## Exercise 6.1: Increasing the context length"
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "5860ba9f-2db3-4480-b96b-4be1c68981eb",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "We can pad the inputs to the maximum number of tokens to the maximum the model supports by setting the max length to\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```python\n",
|
|
|
|
|
+ "max_length = 1024\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "train_dataset = SpamDataset(base_path / \"train.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
|
|
|
|
+ "val_dataset = SpamDataset(base_path / \"validation.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
|
|
|
|
+ "test_dataset = SpamDataset(base_path / \"test.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "or, equivalently, we can define the `max_length` via:\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```python\n",
|
|
|
|
|
+ "max_length = model.pos_emb.weight.shape[0]\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "or\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```python\n",
|
|
|
|
|
+ "max_length = BASE_CONFIG[\"context_length\"]\n",
|
|
|
|
|
+ "```"
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "2b0f4d5d-17fd-4265-93d8-ea08a22fdaf8",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "For convenience, you can run this experiment via\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "python additional-experiments.py --context_length \"model_context_length\"\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 78.33% (versus the 95.67% in the main chapter)."
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "5a780455-f52a-48d1-ab82-6afd40bcad8b",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "## Exercise 6.2: Finetuning the whole model"
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "56aa5208-aa29-4165-a0ec-7480754e2a18",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "Instead of finetuning just the final transformer block, we can finetune the entire model by removing the following lines from the code:\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```python\n",
|
|
|
|
|
+ "for param in model.parameters():\n",
|
|
|
|
|
+ " param.requires_grad = False\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "For convenience, you can run this experiment via\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "python additional-experiments.py --trainable_layers all\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a 1% improved test accuracy of 96.67% (versus the 95.67% in the main chapter)."
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "2269bce3-f2b5-4a76-a692-5977c75a57b6",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "## Exercise 6.3: Finetuning the first versus last token "
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
|
+ "id": "7418a629-51b6-4aa2-83b7-bc0261bc370f",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "source": [
|
|
|
|
|
+ "ther than finetuning the last output token, we can finetune the first output token by changing \n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```python\n",
|
|
|
|
|
+ "model(input_batch)[:, -1, :]\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "to\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```python\n",
|
|
|
|
|
+ "model(input_batch)[:, 0, :]\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "everywhere in the code.\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "For convenience, you can run this experiment via\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "python additional-experiments.py --trainable_token first\n",
|
|
|
|
|
+ "```\n",
|
|
|
|
|
+ "\n",
|
|
|
|
|
+ "using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 75.00% (versus the 95.67% in the main chapter)."
|
|
|
|
|
+ ]
|
|
|
|
|
+ },
|
|
|
|
|
+ {
|
|
|
|
|
+ "cell_type": "code",
|
|
|
|
|
+ "execution_count": null,
|
|
|
|
|
+ "id": "e5e6188a-f182-4f26-b9e5-ccae3ecadae0",
|
|
|
|
|
+ "metadata": {},
|
|
|
|
|
+ "outputs": [],
|
|
|
|
|
+ "source": []
|
|
|
|
|
+ }
|
|
|
|
|
+ ],
|
|
|
|
|
+ "metadata": {
|
|
|
|
|
+ "kernelspec": {
|
|
|
|
|
+ "display_name": "Python 3 (ipykernel)",
|
|
|
|
|
+ "language": "python",
|
|
|
|
|
+ "name": "python3"
|
|
|
|
|
+ },
|
|
|
|
|
+ "language_info": {
|
|
|
|
|
+ "codemirror_mode": {
|
|
|
|
|
+ "name": "ipython",
|
|
|
|
|
+ "version": 3
|
|
|
|
|
+ },
|
|
|
|
|
+ "file_extension": ".py",
|
|
|
|
|
+ "mimetype": "text/x-python",
|
|
|
|
|
+ "name": "python",
|
|
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
|
|
+ "pygments_lexer": "ipython3",
|
|
|
|
|
+ "version": "3.10.6"
|
|
|
|
|
+ }
|
|
|
|
|
+ },
|
|
|
|
|
+ "nbformat": 4,
|
|
|
|
|
+ "nbformat_minor": 5
|
|
|
|
|
+}
|