Переглянути джерело

Batched KV Cache Inference for Qwen3 (#735)

Sebastian Raschka 4 місяців тому
батько
коміт
a354555049

+ 69 - 1
ch05/11_qwen3/README.md

@@ -292,4 +292,72 @@ Note that the peak memory usage is only listed for Nvidia CUDA devices, as it is
 | Qwen3Model | KV cache          | Nvidia A100 GPU | 25         | 1.47 GB           |
 | Qwen3Model | KV cache compiled | Nvidia A100 GPU | 90         | 1.48 GB           |
 
-Note that all settings above have been tested to produce the same text outputs.
+Note that all settings above have been tested to produce the same text outputs.
+
+ 
+
+#### Pro tip 3: batched inference
+
+We can further increase the throughput via batched inference. While it's not an apples-to-apples comparison, as we are now running inference with a higher number of input sequences, this increases the tokens per second throughput while trading it off against increased memory usage.
+
+This only requires a small code modification with respect to preparing the prompt. For example, consider this batched prompt below:
+
+```python
+from llms_from_scratch.ch04 import generate_text_simple
+from llms_from_scratch.qwen3 import Qwen3Model, QWEN_CONFIG_06_B
+# ...
+
+prompts = [
+    "Give me a short introduction to neural networks.",
+    "Give me a short introduction to machine learning.",
+    "Give me a short introduction to deep learning models.",
+    "Give me a short introduction to natural language processing.",
+    "Give me a short introduction to generative AI systems.",
+    "Give me a short introduction to transformer architectures.",
+    "Give me a short introduction to supervised learning methods.",
+    "Give me a short introduction to unsupervised learning.",
+]
+
+tokenized_prompts = [tokenizer.encode(p) for p in prompts]
+max_len = max(len(t) for t in tokenized_prompts)
+padded_token_ids = [
+    t + [tokenizer.pad_token_id] * (max_len - len(t)) for t in tokenized_prompts
+]
+input_tensor = torch.tensor(padded_token_ids).to(device)
+
+output_token_ids = generate_text_simple(
+    model=model,
+    idx=input_tensor,
+    max_new_tokens=150,
+    context_size=QWEN_CONFIG_06_B["context_length"],
+)
+```
+
+The code for the KV cache version is similar, except that it requires using these drop-in replacements:
+
+```python
+from llms_from_scratch.kv_cache_batched.generate import generate_text_simple
+from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model
+```
+
+
+The experiments below are run with a batch size of 8.
+
+| Model      | Mode              | Hardware        | Batch size | Tokens/sec | GPU Memory (VRAM) |
+| ---------- | ----------------- | --------------- | ---------- | ---------- | ----------------- |
+| Qwen3Model | Regular           | Mac Mini M4 CPU | 8          | 2          | -                 |
+| Qwen3Model | Regular compiled  | Mac Mini M4 CPU | 8          | -          | -                 |
+| Qwen3Model | KV cache          | Mac Mini M4 CPU | 8          | 92         | -                 |
+| Qwen3Model | KV cache compiled | Mac Mini M4 CPU | 8          | 128        | -                 |
+|            |                   |                 |            |            |                   |
+| Qwen3Model | Regular           | Mac Mini M4 GPU | 8          | 36         | -                 |
+| Qwen3Model | Regular compiled  | Mac Mini M4 GPU | 8          | -          | -                 |
+| Qwen3Model | KV cache          | Mac Mini M4 GPU | 8          | 61         | -                 |
+| Qwen3Model | KV cache compiled | Mac Mini M4 GPU | 8          | -          | -                 |
+|            |                   |                 |            |            |                   |
+| Qwen3Model | Regular           | Nvidia A100 GPU | 8          | 184        | 2.19 GB           |
+| Qwen3Model | Regular compiled  | Nvidia A100 GPU | 8          | 351        | 2.19 GB           |
+| Qwen3Model | KV cache          | Nvidia A100 GPU | 8          | 140        | 3.13 GB           |
+| Qwen3Model | KV cache compiled | Nvidia A100 GPU | 8          | 280        | 1.75 GB           |
+
+

+ 4 - 0
pkg/llms_from_scratch/README.md

@@ -161,6 +161,10 @@ from llms_from_scratch.qwen3 import (
 # KV cache drop-in replacements
 from llms_from_scratch.kv_cache.qwen3 import Qwen3Model
 from llms_from_scratch.kv_cache.generate import generate_text_simple
+
+# KV cache drop-in replacements with batched inference support
+from llms_from_scratch.kv_cache_batched.generate import generate_text_simple
+from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model
 ```
 
 For the `llms_from_scratch.qwen3` usage information, please see [this bonus section](../../ch05/11_qwen3/README.md).

+ 4 - 0
pkg/llms_from_scratch/kv_cache_batched/__init__.py

@@ -0,0 +1,4 @@
+# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
+# Source for "Build a Large Language Model From Scratch"
+#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
+# Code: https://github.com/rasbt/LLMs-from-scratch

+ 50 - 0
pkg/llms_from_scratch/kv_cache_batched/generate.py

@@ -0,0 +1,50 @@
+# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
+# Source for "Build a Large Language Model From Scratch"
+#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
+# Code: https://github.com/rasbt/LLMs-from-scratch
+
+from .utils import KVCache
+import torch
+
+
+def generate_text_simple(model, idx, max_new_tokens, context_size=None, use_cache=True):
+    model.eval()
+    ctx_len = context_size or model.cfg["context_length"]
+    batch_size = idx.size(0)
+
+    with torch.no_grad():
+        if use_cache:
+            # initialize cache and positions
+            cache = KVCache(n_layers=model.cfg["n_layers"], batch_size=batch_size)
+            model.reset_kv_cache(batch_size=batch_size, device=idx.device)
+
+            # initial full-context pass
+            input_ids = idx[:, -ctx_len:]
+            seq_len = input_ids.size(1)
+            start_pos = model.current_pos.clone()
+            logits = model(
+                input_ids,
+                cache=cache,
+                start_pos=start_pos
+            )
+            model.current_pos += seq_len
+
+            # iterative generation
+            for _ in range(max_new_tokens):
+                next_token = logits[:, -1].argmax(dim=-1, keepdim=True)  # (B, 1)
+                logits = model(
+                    next_token,
+                    cache=cache,
+                    start_pos=model.current_pos.clone()
+                )
+                model.current_pos += 1
+                idx = torch.cat([idx, next_token], dim=1)
+        else:
+            # no cache
+            for _ in range(max_new_tokens):
+                input_ids = idx[:, -ctx_len:]
+                logits = model(input_ids, cache=None, start_pos=None)
+                next_token = logits[:, -1].argmax(dim=-1, keepdim=True)
+                idx = torch.cat([idx, next_token], dim=1)
+
+    return idx

+ 287 - 0
pkg/llms_from_scratch/kv_cache_batched/qwen3.py

@@ -0,0 +1,287 @@
+# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
+# Source for "Build a Large Language Model From Scratch"
+#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
+# Code: https://github.com/rasbt/LLMs-from-scratch
+
+from .utils import KVCache   # noqa: F401
+from ..qwen3 import (   # noqa: F401
+    QWEN_CONFIG_06_B, QWEN3_CONFIG_1_7B, QWEN3_CONFIG_4B,
+    QWEN3_CONFIG_8B, QWEN3_CONFIG_14B, QWEN3_CONFIG_32B,
+    Qwen3Tokenizer, load_weights_into_qwen,
+    download_from_huggingface,
+    download_from_huggingface_from_snapshots
+)
+
+import torch
+import torch.nn as nn
+
+
+class Qwen3Model(nn.Module):
+    def __init__(self, cfg):
+        super().__init__()
+
+        # Main model parameters
+        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
+
+        self.trf_blocks = nn.ModuleList(  # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
+            [TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
+        )
+        self.final_norm = RMSNorm(cfg["emb_dim"])
+        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
+
+        # Reusable utilities
+        if cfg["head_dim"] is None:
+            head_dim = cfg["emb_dim"] // cfg["n_heads"]
+        else:
+            head_dim = cfg["head_dim"]
+        cos, sin = compute_rope_params(
+            head_dim=head_dim,
+            theta_base=cfg["rope_base"],
+            context_length=cfg["context_length"]
+        )
+        self.register_buffer("cos", cos, persistent=False)
+        self.register_buffer("sin", sin, persistent=False)
+        self.cfg = cfg
+        self.current_pos = None  # Batched version tracks positions per sample
+
+    def forward(self, in_idx, cache=None, start_pos=None):
+        B, num_tokens = in_idx.size()
+        tok_embeds = self.tok_emb(in_idx)
+        x = tok_embeds
+        device = x.device
+
+        if cache is not None:
+            pos_start = start_pos
+            pos_end = pos_start + num_tokens
+            max_len = pos_end.max().item()
+            full_mask = torch.triu(
+                torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1
+            )
+            mask = torch.zeros(B, 1, num_tokens, max_len, device=device, dtype=torch.bool)
+            for i in range(B):
+                ps, pe = pos_start[i].item(), pos_end[i].item()
+                mask[i, 0] = full_mask[ps:pe, :pe]
+        else:
+            pos_start = torch.zeros(B, dtype=torch.long, device=device)
+            mask = torch.triu(
+                torch.ones(num_tokens, num_tokens, device=device, dtype=torch.bool), diagonal=1
+            )[None, None, :, :]
+
+        for i, block in enumerate(self.trf_blocks):
+            blk_cache = [cache.get(i, b_idx) for b_idx in range(B)] if cache is not None else None
+            x, new_blk_cache = block(x, mask, self.cos, self.sin, start_pos=pos_start, cache=blk_cache)
+            if cache is not None:
+                for b_idx in range(B):
+                    cache.update(i, b_idx, new_blk_cache[b_idx])
+        x = self.final_norm(x)
+        logits = self.out_head(x.to(self.cfg["dtype"]))
+        return logits
+
+    def reset_kv_cache(self, batch_size, device=None):
+        device = device or next(self.parameters()).device
+        self.current_pos = torch.zeros(batch_size, dtype=torch.long, device=device)
+
+
+class TransformerBlock(nn.Module):
+    def __init__(self, cfg):
+        super().__init__()
+        self.att = GroupedQueryAttention(
+            d_in=cfg["emb_dim"],
+            num_heads=cfg["n_heads"],
+            head_dim=cfg["head_dim"],
+            num_kv_groups=cfg["n_kv_groups"],
+            qk_norm=cfg["qk_norm"],
+            dtype=cfg["dtype"]
+        )
+        self.ff = FeedForward(cfg)
+        self.norm1 = RMSNorm(cfg["emb_dim"], eps=1e-6)
+        self.norm2 = RMSNorm(cfg["emb_dim"], eps=1e-6)
+
+    def forward(self, x, mask, cos, sin, start_pos=0, cache=None):
+        # Shortcut connection for attention block
+        shortcut = x
+        x = self.norm1(x)
+        x, next_cache = self.att(x, mask, cos, sin, start_pos=start_pos, cache=cache)  # Shape [batch_size, num_tokens, emb_size]
+        x = x + shortcut  # Add the original input back
+
+        # Shortcut connection for feed-forward block
+        shortcut = x
+        x = self.norm2(x)
+        x = self.ff(x)
+        x = x + shortcut  # Add the original input back
+
+        return x, next_cache
+
+
+class FeedForward(nn.Module):
+    def __init__(self, cfg):
+        super().__init__()
+        self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
+        self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
+        self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
+
+    def forward(self, x):
+        x_fc1 = self.fc1(x)
+        x_fc2 = self.fc2(x)
+        x = nn.functional.silu(x_fc1) * x_fc2
+        return self.fc3(x)
+
+
+class GroupedQueryAttention(nn.Module):
+    def __init__(self, d_in, num_heads, num_kv_groups, head_dim=None, qk_norm=False, dtype=None):
+        super().__init__()
+        assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
+
+        self.num_heads = num_heads
+        self.num_kv_groups = num_kv_groups
+        self.group_size = num_heads // num_kv_groups
+
+        if head_dim is None:
+            assert d_in % num_heads == 0, "`d_in` must be divisible by `num_heads` if `head_dim` is not set"
+            head_dim = d_in // num_heads
+
+        self.head_dim = head_dim
+        self.d_out = num_heads * head_dim
+
+        self.W_query = nn.Linear(d_in, self.d_out, bias=False, dtype=dtype)
+        self.W_key = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
+        self.W_value = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
+
+        self.out_proj = nn.Linear(self.d_out, d_in, bias=False, dtype=dtype)
+
+        if qk_norm:
+            self.q_norm = RMSNorm(head_dim, eps=1e-6)
+            self.k_norm = RMSNorm(head_dim, eps=1e-6)
+        else:
+            self.q_norm = self.k_norm = None
+
+    def forward(self, x, mask, cos, sin, start_pos=0, cache=None):
+        b, num_tokens, _ = x.shape
+
+        # Apply projections
+        queries = self.W_query(x)  # (b, num_tokens, num_heads * head_dim)
+        keys = self.W_key(x)       # (b, num_tokens, num_kv_groups * head_dim)
+        values = self.W_value(x)   # (b, num_tokens, num_kv_groups * head_dim)
+
+        # Reshape
+        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
+        keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
+        values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
+
+        # Optional normalization
+        if self.q_norm:
+            queries = self.q_norm(queries)
+        if self.k_norm:
+            keys = self.k_norm(keys)
+
+        # Apply RoPE
+        queries = apply_rope(queries, cos, sin, offset=start_pos)
+        keys = apply_rope(keys, cos, sin, offset=start_pos)
+
+        # KV caching
+        next_cache = []
+        for i in range(b):
+            prev = cache[i] if cache else None
+            if prev is None:
+                k_cat = keys[i:i+1]
+                v_cat = values[i:i+1]
+            else:
+                prev_k, prev_v = prev
+                k_cat = torch.cat([prev_k, keys[i:i+1]], dim=2)
+                v_cat = torch.cat([prev_v, values[i:i+1]], dim=2)
+            next_cache.append((k_cat, v_cat))
+
+        keys = torch.cat([k for k, _ in next_cache], dim=0)
+        values = torch.cat([v for _, v in next_cache], dim=0)
+
+        # Expand K and V to match number of heads
+        keys = keys.repeat_interleave(self.group_size, dim=1)
+        values = values.repeat_interleave(self.group_size, dim=1)
+
+        # Attention
+        attn_scores = queries @ keys.transpose(2, 3)
+        attn_scores = attn_scores.masked_fill(mask, -torch.inf)
+
+        # attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1)
+        # PyTorch fails to do the implicit casting, so we have to be intentional with the types
+        scale = torch.tensor(self.head_dim**0.5, dtype=queries.dtype, device=queries.device)
+        attn_weights = torch.softmax(attn_scores / scale, dim=-1).to(values.dtype)
+
+        context = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out)
+        return self.out_proj(context), next_cache
+
+
+def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, dtype=torch.float32):
+    assert head_dim % 2 == 0, "Embedding dimension must be even"
+
+    # Compute the inverse frequencies
+    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
+
+    # Generate position indices
+    positions = torch.arange(context_length, dtype=dtype)
+
+    # Compute the angles
+    angles = positions[:, None] * inv_freq[None, :]  # Shape: (context_length, head_dim // 2)
+
+    # Expand angles to match the head_dim
+    angles = torch.cat([angles, angles], dim=1)  # Shape: (context_length, head_dim)
+
+    # Precompute sine and cosine
+    cos = torch.cos(angles)
+    sin = torch.sin(angles)
+
+    return cos, sin
+
+
+def apply_rope(x, cos, sin, offset):
+    # x: (batch_size, num_heads, seq_len, head_dim)
+    bsz, n_heads, seq_len, head_dim = x.shape
+    assert head_dim % 2 == 0, "Head dimension must be even"
+    assert offset.shape[0] == bsz, "Offset must have one value per batch item"
+
+    # Prepare cos/sin: (seq_len, head_dim)
+    cos = cos[:cos.shape[0], :].unsqueeze(0).unsqueeze(0)  # (1, 1, total_seq_len, head_dim)
+    sin = sin[:sin.shape[0], :].unsqueeze(0).unsqueeze(0)
+
+    # Build position indices per batch item
+    position_ids = torch.arange(seq_len, device=offset.device).unsqueeze(0) + offset.unsqueeze(1)  # (bsz, seq_len)
+    position_ids = position_ids.clamp(max=cos.shape[2] - 1)
+
+    # Gather cos/sin for each position
+    cos = cos[0, 0, position_ids, :]  # (bsz, seq_len, head_dim)
+    sin = sin[0, 0, position_ids, :]
+
+    # Expand for multi-heads
+    cos = cos.unsqueeze(1)  # (bsz, 1, seq_len, head_dim)
+    sin = sin.unsqueeze(1)
+
+    x1 = x[..., :head_dim // 2]
+    x2 = x[..., head_dim // 2:]
+
+    rotated = torch.cat((-x2, x1), dim=-1)
+    x_rotated = (x * cos) + (rotated * sin)
+    return x_rotated
+
+
+class RMSNorm(nn.Module):
+    def __init__(self, emb_dim, eps=1e-6, bias=False, qwen3_compatible=True):
+        super().__init__()
+        self.eps = eps
+        self.qwen3_compatible = qwen3_compatible
+        self.scale = nn.Parameter(torch.ones(emb_dim))
+        self.shift = nn.Parameter(torch.zeros(emb_dim)) if bias else None
+
+    def forward(self, x):
+        input_dtype = x.dtype
+
+        if self.qwen3_compatible:
+            x = x.to(torch.float32)
+
+        variance = x.pow(2).mean(dim=-1, keepdim=True)
+        norm_x = x * torch.rsqrt(variance + self.eps)
+        norm_x = norm_x * self.scale
+
+        if self.shift is not None:
+            norm_x = norm_x + self.shift
+
+        return norm_x.to(input_dtype)

+ 24 - 0
pkg/llms_from_scratch/kv_cache_batched/utils.py

@@ -0,0 +1,24 @@
+# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
+# Source for "Build a Large Language Model From Scratch"
+#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
+# Code: https://github.com/rasbt/LLMs-from-scratch
+
+class KVCache:
+    def __init__(self, n_layers, batch_size):
+        self.cache = [
+            [None for _ in range(batch_size)] for _ in range(n_layers)
+        ]
+
+    def get(self, layer_idx, batch_idx):
+        return self.cache[layer_idx][batch_idx]
+
+    def update(self, layer_idx, batch_idx, value):
+        self.cache[layer_idx][batch_idx] = value
+
+    def get_layer(self, layer_idx):
+        return self.cache[layer_idx]
+
+    def reset(self):
+        for layer in self.cache:
+            for i in range(len(layer)):
+                layer[i] = None

+ 67 - 4
pkg/llms_from_scratch/tests/test_qwen3.py

@@ -15,8 +15,8 @@ from llms_from_scratch.qwen3 import (
 from llms_from_scratch.kv_cache.qwen3 import Qwen3Model as Qwen3ModelKV
 from llms_from_scratch.kv_cache.generate import generate_text_simple as generate_text_simple_cached
 
-# from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model as Qwen3ModelKVBatched
-# from llms_from_scratch.kv_cache_batched.generate import generate_text_simple as generate_text_simple_batched
+from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model as Qwen3ModelKVBatched
+from llms_from_scratch.kv_cache_batched.generate import generate_text_simple as generate_text_simple_batched
 
 import importlib
 import pytest
@@ -172,7 +172,7 @@ def test_model_KV_noKV(qwen3_weights_path):
     input_token_ids = tokenizer.encode(prompt)
     input_token_ids = torch.tensor([input_token_ids])
 
-    out_noKV = generate_text_simple_cached(
+    out_KV = generate_text_simple_cached(
         model=model_KV,
         idx=input_token_ids,
         max_new_tokens=5,
@@ -185,7 +185,7 @@ def test_model_KV_noKV(qwen3_weights_path):
     model_noKV.load_state_dict(torch.load(qwen3_weights_path))
     model_noKV.eval()
 
-    out_KV = generate_text_simple(
+    out_noKV = generate_text_simple(
         model=model_noKV,
         idx=input_token_ids,
         max_new_tokens=5,
@@ -195,6 +195,69 @@ def test_model_KV_noKV(qwen3_weights_path):
     assert torch.equal(out_noKV, out_KV)
 
 
+def test_model_batched_KV(qwen3_weights_path):
+
+    torch.manual_seed(123)
+    model_KV = Qwen3ModelKV(QWEN_CONFIG_06_B)
+    model_KV.load_state_dict(torch.load(qwen3_weights_path))
+    model_KV.eval()
+
+    tokenizer = Qwen3Tokenizer(
+        tokenizer_file_path="tokenizer-base.json",
+        repo_id="rasbt/qwen3-from-scratch",
+        add_generation_prompt=False,
+        add_thinking=False
+    )
+
+    # Batch size 1
+
+    prompt = "Give me a short introduction to large language models."
+    input_token_ids = tokenizer.encode(prompt)
+    input_token_ids = torch.tensor([input_token_ids])
+
+    out_KV = generate_text_simple_cached(
+        model=model_KV,
+        idx=input_token_ids,
+        max_new_tokens=5,
+        context_size=QWEN_CONFIG_06_B["context_length"]
+    )
+    del model_KV
+
+    torch.manual_seed(123)
+    model_KV_batched = Qwen3ModelKVBatched(QWEN_CONFIG_06_B)
+    model_KV_batched.load_state_dict(torch.load(qwen3_weights_path))
+    model_KV_batched.eval()
+
+    out_KV_bs_1 = generate_text_simple_batched(
+        model=model_KV_batched,
+        idx=input_token_ids,
+        max_new_tokens=5,
+        context_size=QWEN_CONFIG_06_B["context_length"]
+    )
+
+    assert torch.equal(out_KV, out_KV_bs_1)
+
+    # Batch size 2
+
+    prompts = [
+        "Give me a short introduction to large language models.",
+        "Give me a short introduction to large language models."
+    ]
+    tokenized_prompts = [tokenizer.encode(p) for p in prompts]
+    max_len = max(len(t) for t in tokenized_prompts)
+    padded_token_ids = [
+        t + [tokenizer.pad_token_id] * (max_len - len(t)) for t in tokenized_prompts
+    ]
+    input_tensor = torch.tensor(padded_token_ids)
+    out_KV_bs_2 = generate_text_simple_batched(
+        model=model_KV_batched,
+        idx=input_tensor,
+        max_new_tokens=5,
+        context_size=QWEN_CONFIG_06_B["context_length"],
+    )
+    assert torch.equal(out_KV.squeeze(0), out_KV_bs_2[0]), (out_KV.squeeze(0).shape, out_KV_bs_2[0].shape)
+
+
 def test_rmsnorm_equivalence():
     torch.manual_seed(42)
 

+ 1 - 1
pyproject.toml

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
 
 [project]
 name = "llms-from-scratch"
-version = "1.0.16"
+version = "1.0.17"
 description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step"
 readme = "README.md"
 requires-python = ">=3.10"