Эх сурвалжийг харах

Add download help message (#274)

Sebastian Raschka 1 жил өмнө
parent
commit
8d02cb1cee

+ 44 - 1
appendix-E/01_main-chapter-code/gpt_download.py

@@ -5,7 +5,9 @@
 
 
 import os
-import requests
+import urllib.request
+
+# import requests
 import json
 import numpy as np
 import tensorflow as tf
@@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+def download_file(url, destination):
+    # Send a GET request to download the file
+
+    try:
+        with urllib.request.urlopen(url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return
+
+            # Define the block size for reading the file
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(url)  # Extract filename from URL
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                # Open the destination file in binary write mode
+                with open(destination, "wb") as file:
+                    # Read the file in chunks and write to destination
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))  # Update progress bar
+    except urllib.error.HTTPError:
+        s = (
+            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
+            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
+            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
+        print(s)
+
+
+# Alternative way using `requests`
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -68,6 +110,7 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):

+ 39 - 30
ch05/01_main-chapter-code/gpt_download.py

@@ -44,6 +44,45 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+def download_file(url, destination):
+    # Send a GET request to download the file
+
+    try:
+        with urllib.request.urlopen(url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return
+
+            # Define the block size for reading the file
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(url)  # Extract filename from URL
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                # Open the destination file in binary write mode
+                with open(destination, "wb") as file:
+                    # Read the file in chunks and write to destination
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))  # Update progress bar
+    except urllib.error.HTTPError:
+        s = (
+            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
+            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
+            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
+        print(s)
+
+
+# Alternative way using `requests`
 """
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
@@ -74,36 +113,6 @@ def download_file(url, destination):
 """
 
 
-def download_file(url, destination):
-    # Send a GET request to download the file
-    with urllib.request.urlopen(url) as response:
-        # Get the total file size from headers, defaulting to 0 if not present
-        file_size = int(response.headers.get("Content-Length", 0))
-
-        # Check if file exists and has the same size
-        if os.path.exists(destination):
-            file_size_local = os.path.getsize(destination)
-            if file_size == file_size_local:
-                print(f"File already exists and is up-to-date: {destination}")
-                return
-
-        # Define the block size for reading the file
-        block_size = 1024  # 1 Kilobyte
-
-        # Initialize the progress bar with total file size
-        progress_bar_description = os.path.basename(url)  # Extract filename from URL
-        with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
-            # Open the destination file in binary write mode
-            with open(destination, "wb") as file:
-                # Read the file in chunks and write to destination
-                while True:
-                    chunk = response.read(block_size)
-                    if not chunk:
-                        break
-                    file.write(chunk)
-                    progress_bar.update(len(chunk))  # Update progress bar
-
-
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
     # Initialize parameters dictionary with empty blocks for each layer
     params = {"blocks": [{} for _ in range(settings["n_layer"])]}

+ 44 - 1
ch06/01_main-chapter-code/gpt_download.py

@@ -5,7 +5,9 @@
 
 
 import os
-import requests
+import urllib.request
+
+# import requests
 import json
 import numpy as np
 import tensorflow as tf
@@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+def download_file(url, destination):
+    # Send a GET request to download the file
+
+    try:
+        with urllib.request.urlopen(url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return
+
+            # Define the block size for reading the file
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(url)  # Extract filename from URL
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                # Open the destination file in binary write mode
+                with open(destination, "wb") as file:
+                    # Read the file in chunks and write to destination
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))  # Update progress bar
+    except urllib.error.HTTPError:
+        s = (
+            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
+            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
+            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
+        print(s)
+
+
+# Alternative way using `requests`
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -68,6 +110,7 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):

+ 44 - 1
ch06/02_bonus_additional-experiments/gpt_download.py

@@ -5,7 +5,9 @@
 
 
 import os
-import requests
+import urllib.request
+
+# import requests
 import json
 import numpy as np
 import tensorflow as tf
@@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+def download_file(url, destination):
+    # Send a GET request to download the file
+
+    try:
+        with urllib.request.urlopen(url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return
+
+            # Define the block size for reading the file
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(url)  # Extract filename from URL
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                # Open the destination file in binary write mode
+                with open(destination, "wb") as file:
+                    # Read the file in chunks and write to destination
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))  # Update progress bar
+    except urllib.error.HTTPError:
+        s = (
+            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
+            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
+            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
+        print(s)
+
+
+# Alternative way using `requests`
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -68,6 +110,7 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):

+ 44 - 1
ch06/03_bonus_imdb-classification/gpt_download.py

@@ -5,7 +5,9 @@
 
 
 import os
-import requests
+import urllib.request
+
+# import requests
 import json
 import numpy as np
 import tensorflow as tf
@@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+def download_file(url, destination):
+    # Send a GET request to download the file
+
+    try:
+        with urllib.request.urlopen(url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return
+
+            # Define the block size for reading the file
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(url)  # Extract filename from URL
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                # Open the destination file in binary write mode
+                with open(destination, "wb") as file:
+                    # Read the file in chunks and write to destination
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))  # Update progress bar
+    except urllib.error.HTTPError:
+        s = (
+            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
+            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
+            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
+        print(s)
+
+
+# Alternative way using `requests`
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -68,6 +110,7 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):

+ 44 - 1
ch07/01_main-chapter-code/gpt_download.py

@@ -5,7 +5,9 @@
 
 
 import os
-import requests
+import urllib.request
+
+# import requests
 import json
 import numpy as np
 import tensorflow as tf
@@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+def download_file(url, destination):
+    # Send a GET request to download the file
+
+    try:
+        with urllib.request.urlopen(url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return
+
+            # Define the block size for reading the file
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(url)  # Extract filename from URL
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                # Open the destination file in binary write mode
+                with open(destination, "wb") as file:
+                    # Read the file in chunks and write to destination
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))  # Update progress bar
+    except urllib.error.HTTPError:
+        s = (
+            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
+            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
+            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
+        print(s)
+
+
+# Alternative way using `requests`
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -68,6 +110,7 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):