Browse Source

RoPE updates (#412)

* RoPE updates

* Apply suggestions from code review

* updates

* updates

* updates
Sebastian Raschka 1 year ago
parent
commit
7cd6a670ed

+ 4 - 4
ch05/07_gpt_to_llama/converting-gpt-to-llama2.ipynb

@@ -426,7 +426,7 @@
     "    assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
     "\n",
     "    # Compute the inverse frequencies\n",
-    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
+    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
     "\n",
     "    # Generate position indices\n",
     "    positions = torch.arange(context_length)\n",
@@ -493,8 +493,8 @@
     "\n",
     "# Dummy query and key tensors\n",
     "torch.manual_seed(123)\n",
-    "queries = torch.randn(batch_size, context_len, num_heads, head_dim)\n",
-    "keys = torch.randn(batch_size, context_len, num_heads, head_dim)\n",
+    "queries = torch.randn(batch_size, num_heads, context_len, head_dim)\n",
+    "keys = torch.randn(batch_size, num_heads, context_len, head_dim)\n",
     "\n",
     "# Apply rotary position embeddings\n",
     "queries_rot = compute_rope(queries, cos, sin)\n",
@@ -1691,7 +1691,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.4"
+   "version": "3.10.6"
   },
   "widgets": {
    "application/vnd.jupyter.widget-state+json": {

+ 4 - 4
ch05/07_gpt_to_llama/converting-llama2-to-llama3.ipynb

@@ -278,7 +278,7 @@
     "    assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
     "\n",
     "    # Compute the inverse frequencies\n",
-    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
+    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
     "\n",
     "    ################################ NEW ###############################################\n",
     "    # Frequency adjustments\n",
@@ -383,8 +383,8 @@
     "\n",
     "# Dummy query and key tensors\n",
     "torch.manual_seed(123)\n",
-    "queries = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
-    "keys = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
+    "queries = torch.randn(batch_size, num_heads, llama_3_context_len, head_dim)\n",
+    "keys = torch.randn(batch_size, num_heads, llama_3_context_len, head_dim)\n",
     "\n",
     "# Apply rotary position embeddings\n",
     "queries_rot = compute_rope(queries, cos, sin)\n",
@@ -2701,7 +2701,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.4"
+   "version": "3.10.6"
   },
   "widgets": {
    "application/vnd.jupyter.widget-state+json": {

+ 2 - 2
ch05/07_gpt_to_llama/standalone-llama32.ipynb

@@ -133,7 +133,7 @@
     "    assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
     "\n",
     "    # Compute the inverse frequencies\n",
-    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
+    "    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
     "\n",
     "    # Frequency adjustments\n",
     "    if freq_config is not None:\n",
@@ -1061,7 +1061,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.4"
+   "version": "3.10.6"
   }
  },
  "nbformat": 4,

+ 74 - 0
ch05/07_gpt_to_llama/tests/Untitled.ipynb

@@ -0,0 +1,74 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "40d2405d-ee10-44ad-b20e-cf32078f926a",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "True | head dim: 1, tensor([]), tensor([])\n",
+      "True | head dim: 2, tensor([1.]), tensor([1.])\n",
+      "True | head dim: 3, tensor([1.]), tensor([1.])\n",
+      "True | head dim: 4, tensor([1.0000, 0.0100]), tensor([1.0000, 0.0100])\n",
+      "False | head dim: 5, tensor([1.0000, 0.0100]), tensor([1.0000, 0.0251])\n",
+      "True | head dim: 6, tensor([1.0000, 0.0464, 0.0022]), tensor([1.0000, 0.0464, 0.0022])\n",
+      "False | head dim: 7, tensor([1.0000, 0.0464, 0.0022]), tensor([1.0000, 0.0720, 0.0052])\n",
+      "True | head dim: 8, tensor([1.0000, 0.1000, 0.0100, 0.0010]), tensor([1.0000, 0.1000, 0.0100, 0.0010])\n",
+      "False | head dim: 9, tensor([1.0000, 0.1000, 0.0100, 0.0010]), tensor([1.0000, 0.1292, 0.0167, 0.0022])\n",
+      "True | head dim: 10, tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04]), tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04])\n",
+      "False | head dim: 11, tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04]), tensor([1.0000, 0.1874, 0.0351, 0.0066, 0.0012])\n"
+     ]
+    }
+   ],
+   "source": [
+    "import torch\n",
+    "\n",
+    "theta_base = 10_000\n",
+    "\n",
+    "for head_dim in range(1, 12):\n",
+    "\n",
+    "    before = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
+    "    after = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
+    "    \n",
+    "    s = f\"{torch.equal(before, after)} | head dim: {head_dim}, {before}, {after}\"\n",
+    "    print(s)\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0abfbf38-93a4-4994-8e7e-a543477268a8",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.6"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}

+ 2 - 1
ch05/07_gpt_to_llama/tests/test-requirements-extra.txt

@@ -1 +1,2 @@
-transformers>=4.44.2
+transformers>=4.44.2
+litgpt>=0.5.0

+ 116 - 2
ch05/07_gpt_to_llama/tests/tests.py

@@ -10,11 +10,82 @@ import os
 import sys
 import types
 import nbformat
+from typing import Optional, Tuple
 import torch
 import pytest
 from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
 
 
+# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
+# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
+def litgpt_build_rope_cache(
+    seq_len: int,
+    n_elem: int,
+    device: Optional[torch.device] = None,
+    base: int = 10000,
+    condense_ratio: int = 1,
+    extra_config: Optional[dict] = None,
+) -> Tuple[torch.Tensor, torch.Tensor]:
+    """
+    Enhanced Transformer with Rotary Position Embedding.
+
+    Args:
+        seq_len (int): Sequence length.
+        n_elem (int): Number of elements (head dimension).
+        device (torch.device, optional): Device for tensor allocations.
+        base (int, optional): Base for computing inverse frequencies.
+        condense_ratio (int, optional): Ratio to condense the position indices.
+        extra_config (dict, optional): Configuration parameters for frequency adjustments (used by Llama 3.1 and 3.2)
+
+    Returns:
+        Tuple[torch.Tensor, torch.Tensor]: Cosine and sine caches for RoPE.
+    """
+
+    # Compute the inverse frequencies theta
+    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
+
+    if extra_config is not None:
+        orig_context_len = extra_config["original_max_seq_len"]
+        factor = extra_config["factor"]
+        low_freq_factor = extra_config["low_freq_factor"]
+        high_freq_factor = extra_config["high_freq_factor"]
+
+        wavelen = 2 * torch.pi / theta
+        ratio = orig_context_len / wavelen
+        smooth_factor = (ratio - low_freq_factor) / (high_freq_factor - low_freq_factor)
+        smooth_factor = torch.clamp(smooth_factor, min=0.0, max=1.0)
+
+        # Compute adjusted_theta without masked indexing
+        adjusted_theta = (1 - smooth_factor) * (theta / factor) + smooth_factor * theta
+        theta = adjusted_theta
+
+    # Create position indices `[0, 1, ..., seq_len - 1]`
+    seq_idx = torch.arange(seq_len, device=device) / condense_ratio
+
+    # Calculate the product of position index and $\theta_i$
+    idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
+
+    return torch.cos(idx_theta), torch.sin(idx_theta)
+
+
+# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
+# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
+def litgpt_apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
+    head_size = x.size(-1)
+    x1 = x[..., : head_size // 2]  # (B, nh, T, hs/2)
+    x2 = x[..., head_size // 2:]  # (B, nh, T, hs/2)
+    rotated = torch.cat((-x2, x1), dim=-1)  # (B, nh, T, hs)
+    if cos.dim() > 1:
+        # batch dimensions must align
+        # sin/cos are (B, T, hs) so we unsqeeze -3 for nh
+        # we count from back because all of apply_rope does
+        cos = cos.unsqueeze(-3)
+        sin = sin.unsqueeze(-3)
+
+    roped = (x * cos) + (rotated * sin)
+    return roped.to(dtype=x.dtype)
+
+
 @pytest.fixture(scope="module")
 def notebook():
     def import_definitions_from_notebook(notebooks):
@@ -84,21 +155,30 @@ def test_rope_llama2(notebook):
     queries_rot = this_nb.compute_rope(queries, cos, sin)
     keys_rot = this_nb.compute_rope(keys, cos, sin)
 
+    # Generate reference RoPE via HF
     rot_emb = LlamaRotaryEmbedding(
         dim=head_dim,
         max_position_embeddings=context_len,
         base=10_000
     )
-
     position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
     ref_cos, ref_sin = rot_emb(queries, position_ids)
     ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
-
     torch.testing.assert_close(sin, ref_sin.squeeze(0))
     torch.testing.assert_close(cos, ref_cos.squeeze(0))
     torch.testing.assert_close(keys_rot, ref_keys_rot)
     torch.testing.assert_close(queries_rot, ref_queries_rot)
 
+    # Generate reference RoPE via LitGPT
+    litgpt_cos, litgpt_sin = litgpt_build_rope_cache(context_len, n_elem=head_dim, base=10_000)
+    litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
+    litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)
+
+    torch.testing.assert_close(sin, litgpt_sin)
+    torch.testing.assert_close(cos, litgpt_cos)
+    torch.testing.assert_close(keys_rot, litgpt_keys_rot)
+    torch.testing.assert_close(queries_rot, litgpt_queries_rot)
+
 
 def test_rope_llama3(notebook):
 
@@ -128,6 +208,7 @@ def test_rope_llama3(notebook):
     queries_rot = nb1.compute_rope(queries, cos, sin)
     keys_rot = nb1.compute_rope(keys, cos, sin)
 
+    # Generate reference RoPE via HF
     rot_emb = LlamaRotaryEmbedding(
         dim=head_dim,
         max_position_embeddings=context_len,
@@ -143,6 +224,16 @@ def test_rope_llama3(notebook):
     torch.testing.assert_close(keys_rot, ref_keys_rot)
     torch.testing.assert_close(queries_rot, ref_queries_rot)
 
+    # Generate reference RoPE via LitGPT
+    litgpt_cos, litgpt_sin = litgpt_build_rope_cache(context_len, n_elem=head_dim, base=theta_base)
+    litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
+    litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)
+
+    torch.testing.assert_close(sin, litgpt_sin)
+    torch.testing.assert_close(cos, litgpt_cos)
+    torch.testing.assert_close(keys_rot, litgpt_keys_rot)
+    torch.testing.assert_close(queries_rot, litgpt_queries_rot)
+
 
 def test_rope_llama3_12(notebook):
 
@@ -180,6 +271,7 @@ def test_rope_llama3_12(notebook):
     queries_rot = nb1.compute_rope(queries, cos, sin)
     keys_rot = nb1.compute_rope(keys, cos, sin)
 
+    # Generate reference RoPE via HF
     hf_rope_params = {
         "factor": 8.0,
         "low_freq_factor": 1.0,
@@ -210,6 +302,28 @@ def test_rope_llama3_12(notebook):
     torch.testing.assert_close(keys_rot, ref_keys_rot)
     torch.testing.assert_close(queries_rot, ref_queries_rot)
 
+    # Generate reference RoPE via LitGPT
+    litgpt_rope_config = {
+        "factor": 8.0,
+        "low_freq_factor": 1.0,
+        "high_freq_factor": 4.0,
+        "original_max_seq_len": 8192
+    }
+
+    litgpt_cos, litgpt_sin = litgpt_build_rope_cache(
+        context_len,
+        n_elem=head_dim,
+        base=rope_theta,
+        extra_config=litgpt_rope_config
+    )
+    litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
+    litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)
+
+    torch.testing.assert_close(sin, litgpt_sin)
+    torch.testing.assert_close(cos, litgpt_cos)
+    torch.testing.assert_close(keys_rot, litgpt_keys_rot)
+    torch.testing.assert_close(queries_rot, litgpt_queries_rot)
+
 
 def test_silu(notebook):
     example_batch = torch.randn(2, 3, 4)