Quellcode durchsuchen

fixed typos (#414)

* fixed typos

* fixed formatting

* Update ch03/02_bonus_efficient-multihead-attention/mha-implementations.ipynb

* del weights after load into model

---------

Co-authored-by: Sebastian Raschka <mail@sebastianraschka.com>
Daniel Kleine vor 1 Jahr
Ursprung
Commit
5ff72c2850

+ 11 - 9
ch03/02_bonus_efficient-multihead-attention/mha-implementations.ipynb

@@ -83,8 +83,8 @@
    },
    "source": [
     "- To run all the code in this notebook, please ensure you update to at least PyTorch 2.5 (FlexAttention is not included in earlier PyTorch releases)\n",
-    "If the code cell above shows a PyTorch version lower than 2.5, you can upgrade your PyTorch installation by uncommenting and running the following code cell (Please note that PyTorch 2.5 requires Python 3.9 or later)\n",
-    "- For more specific instructions and CUDA versions, please refer to the official installation guide at https://pytorch.org."
+    "- If the code cell above shows a PyTorch version lower than 2.5, you can upgrade your PyTorch installation by uncommenting and running the following code cell (Please note that PyTorch 2.5 requires Python 3.9 or later)\n",
+    "- For more specific instructions and CUDA versions, please refer to the official installation guide at https://pytorch.org"
    ]
   },
   {
@@ -886,12 +886,14 @@
     "id": "d2164859-31a0-4537-b4fb-27d57675ba77"
    },
    "source": [
-    "- Set `need_weights` (default `True`) to need_weights=False so that `MultiheadAttention` uses `scaled_dot_product_attention` [according to the documentation](https://github.com/pytorch/pytorch/blob/71d020262793542974cf13b30f2a9099773f015c/torch/nn/modules/activation.py#L1096)\n",
+    "- Set `need_weights` (default `True`) to `False` so that `MultiheadAttention` uses `scaled_dot_product_attention` [according to the documentation](https://github.com/pytorch/pytorch/blob/71d020262793542974cf13b30f2a9099773f015c/torch/nn/modules/activation.py#L1096)\n",
     "\n",
-    ">  need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.\n",
-    "            Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention``\n",
-    "            and achieve the best performance for MHA.\n",
-    "            Default: ``True``."
+    "```markdown\n",
+    "need_weights: If specified, returns `attn_output_weights` in addition to `attn_outputs`.\n",
+    "           Set `need_weights=False` to use the optimized `scaled_dot_product_attention`\n",
+    "           and achieve the best performance for MHA.\n",
+    "           Default: `True`\n",
+    "```"
    ]
   },
   {
@@ -1965,7 +1967,7 @@
    "provenance": []
   },
   "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
+   "display_name": "pt",
    "language": "python",
    "name": "python3"
   },
@@ -1979,7 +1981,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.4"
+   "version": "3.11.9"
   }
  },
  "nbformat": 4,

+ 7 - 5
ch05/07_gpt_to_llama/converting-llama2-to-llama3.ipynb

@@ -1843,7 +1843,7 @@
     "id": "VlH7qYVdDKQr"
    },
    "source": [
-    "- Note that the Llama 3 model should ideally used with the correct prompt template that was used during finetuning (as discussed in chapter 7)\n",
+    "- Note that the Llama 3 model should ideally be used with the correct prompt template that was used during finetuning (as discussed in chapter 7)\n",
     "- Below is a wrapper class around the tokenizer based on Meta AI's Llama 3-specific [ChatFormat code](https://github.com/meta-llama/llama3/blob/11817d47e1ba7a4959b025eb1ca308572e0e3963/llama/tokenizer.py#L202) that constructs the prompt template"
    ]
   },
@@ -2099,7 +2099,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "LLAMA32_CONFIG[\"context_length\"] = 8192"
+    "LLAMA31_CONFIG_8B[\"context_length\"] = 8192"
    ]
   },
   {
@@ -2319,7 +2319,8 @@
     "    combined_weights.update(current_weights)\n",
     "\n",
     "load_weights_into_llama(model, LLAMA31_CONFIG_8B, combined_weights)\n",
-    "model.to(device);"
+    "model.to(device);\n",
+    "del combined_weights  # free up memory"
    ]
   },
   {
@@ -2466,7 +2467,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "LLAMA32_CONFIG[\"context_length\"] = 8192"
+    "LLAMA32_CONFIG_1B[\"context_length\"] = 8192"
    ]
   },
   {
@@ -2594,7 +2595,8 @@
     "current_weights = load_file(weights_file)\n",
     "\n",
     "load_weights_into_llama(model, LLAMA32_CONFIG_1B, current_weights)\n",
-    "model.to(device);"
+    "model.to(device);\n",
+    "del current_weights  # free up memory"
    ]
   },
   {