|
|
@@ -0,0 +1,287 @@
|
|
|
+# This file collects all the relevant code that we covered thus far
|
|
|
+# throughout Chapters 2-4.
|
|
|
+# This file can be run as a standalone script.
|
|
|
+
|
|
|
+import tiktoken
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+from torch.utils.data import Dataset, DataLoader
|
|
|
+
|
|
|
+#####################################
|
|
|
+# Chapter 2
|
|
|
+#####################################
|
|
|
+
|
|
|
+
|
|
|
+class GPTDatasetV1(Dataset):
|
|
|
+ def __init__(self, txt, tokenizer, max_length, stride):
|
|
|
+ self.tokenizer = tokenizer
|
|
|
+ self.input_ids = []
|
|
|
+ self.target_ids = []
|
|
|
+
|
|
|
+ # Tokenize the entire text
|
|
|
+ token_ids = tokenizer.encode(txt)
|
|
|
+
|
|
|
+ # Use a sliding window to chunk the book into overlapping sequences of max_length
|
|
|
+ for i in range(0, len(token_ids) - max_length, stride):
|
|
|
+ input_chunk = token_ids[i:i + max_length]
|
|
|
+ target_chunk = token_ids[i + 1: i + max_length + 1]
|
|
|
+ self.input_ids.append(torch.tensor(input_chunk))
|
|
|
+ self.target_ids.append(torch.tensor(target_chunk))
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return len(self.input_ids)
|
|
|
+
|
|
|
+ def __getitem__(self, idx):
|
|
|
+ return self.input_ids[idx], self.target_ids[idx]
|
|
|
+
|
|
|
+
|
|
|
+def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
|
|
+ stride=128, shuffle=True, drop_last=True):
|
|
|
+ # Initialize the tokenizer
|
|
|
+ tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
+
|
|
|
+ # Create dataset
|
|
|
+ dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
|
|
|
+
|
|
|
+ # Create dataloader
|
|
|
+ dataloader = DataLoader(
|
|
|
+ dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
|
|
|
+
|
|
|
+ return dataloader
|
|
|
+
|
|
|
+
|
|
|
+#####################################
|
|
|
+# Chapter 3
|
|
|
+#####################################
|
|
|
+class MultiHeadAttention(nn.Module):
|
|
|
+ def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
|
|
|
+ super().__init__()
|
|
|
+ assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
|
|
|
+
|
|
|
+ self.d_out = d_out
|
|
|
+ self.num_heads = num_heads
|
|
|
+ self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
|
|
+
|
|
|
+ self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
|
+ self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
|
+ self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
|
+ self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
|
|
+ self.dropout = nn.Dropout(dropout)
|
|
|
+ self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ b, num_tokens, d_in = x.shape
|
|
|
+
|
|
|
+ keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
|
|
+ queries = self.W_query(x)
|
|
|
+ values = self.W_value(x)
|
|
|
+
|
|
|
+ # We implicitly split the matrix by adding a `num_heads` dimension
|
|
|
+ # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
|
|
+ keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
|
+ values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
|
+ queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
|
+
|
|
|
+ # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
|
|
+ keys = keys.transpose(1, 2)
|
|
|
+ queries = queries.transpose(1, 2)
|
|
|
+ values = values.transpose(1, 2)
|
|
|
+
|
|
|
+ # Compute scaled dot-product attention (aka self-attention) with a causal mask
|
|
|
+ attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
|
|
+
|
|
|
+ # Original mask truncated to the number of tokens and converted to boolean
|
|
|
+ mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
|
|
|
+
|
|
|
+ # Use the mask to fill attention scores
|
|
|
+ attn_scores.masked_fill_(mask_bool, -torch.inf)
|
|
|
+
|
|
|
+ attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
|
|
+ attn_weights = self.dropout(attn_weights)
|
|
|
+
|
|
|
+ # Shape: (b, num_tokens, num_heads, head_dim)
|
|
|
+ context_vec = (attn_weights @ values).transpose(1, 2)
|
|
|
+
|
|
|
+ # Combine heads, where self.d_out = self.num_heads * self.head_dim
|
|
|
+ context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
|
|
+ context_vec = self.out_proj(context_vec) # optional projection
|
|
|
+
|
|
|
+ return context_vec
|
|
|
+
|
|
|
+
|
|
|
+#####################################
|
|
|
+# Chapter 4
|
|
|
+#####################################
|
|
|
+class LayerNorm(nn.Module):
|
|
|
+ def __init__(self, emb_dim):
|
|
|
+ super().__init__()
|
|
|
+ self.eps = 1e-5
|
|
|
+ self.scale = nn.Parameter(torch.ones(emb_dim))
|
|
|
+ self.shift = nn.Parameter(torch.zeros(emb_dim))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ mean = x.mean(dim=-1, keepdim=True)
|
|
|
+ var = x.var(dim=-1, keepdim=True, unbiased=False)
|
|
|
+ norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
|
|
+ return self.scale * norm_x + self.shift
|
|
|
+
|
|
|
+
|
|
|
+class GELU(nn.Module):
|
|
|
+ def __init__(self):
|
|
|
+ super().__init__()
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return 0.5 * x * (1 + torch.tanh(
|
|
|
+ torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
|
|
+ (x + 0.044715 * torch.pow(x, 3))
|
|
|
+ ))
|
|
|
+
|
|
|
+
|
|
|
+class FeedForward(nn.Module):
|
|
|
+ def __init__(self, cfg):
|
|
|
+ super().__init__()
|
|
|
+ self.layers = nn.Sequential(
|
|
|
+ nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
|
|
+ GELU(),
|
|
|
+ nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
|
|
+ nn.Dropout(cfg["drop_rate"])
|
|
|
+ )
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return self.layers(x)
|
|
|
+
|
|
|
+
|
|
|
+class TransformerBlock(nn.Module):
|
|
|
+ def __init__(self, cfg):
|
|
|
+ super().__init__()
|
|
|
+ self.att = MultiHeadAttention(
|
|
|
+ d_in=cfg["emb_dim"],
|
|
|
+ d_out=cfg["emb_dim"],
|
|
|
+ block_size=cfg["ctx_len"],
|
|
|
+ num_heads=cfg["n_heads"],
|
|
|
+ dropout=cfg["drop_rate"],
|
|
|
+ qkv_bias=cfg["qkv_bias"])
|
|
|
+ self.ff = FeedForward(cfg)
|
|
|
+ self.norm1 = LayerNorm(cfg["emb_dim"])
|
|
|
+ self.norm2 = LayerNorm(cfg["emb_dim"])
|
|
|
+ self.drop_resid = nn.Dropout(cfg["drop_rate"])
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ # Shortcut connection for attention block
|
|
|
+ shortcut = x
|
|
|
+ x = self.norm1(x)
|
|
|
+ x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
|
|
+ x = self.drop_resid(x)
|
|
|
+ x = x + shortcut # Add the original input back
|
|
|
+
|
|
|
+ # Shortcut connection for feed-forward block
|
|
|
+ shortcut = x
|
|
|
+ x = self.norm2(x)
|
|
|
+ x = self.ff(x)
|
|
|
+ x = self.drop_resid(x)
|
|
|
+ x = x + shortcut # Add the original input back
|
|
|
+
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+class GPTModel(nn.Module):
|
|
|
+ def __init__(self, cfg):
|
|
|
+ super().__init__()
|
|
|
+ self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
|
|
+ self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"])
|
|
|
+ self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
|
|
+
|
|
|
+ self.trf_blocks = nn.Sequential(
|
|
|
+ *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
|
|
+
|
|
|
+ self.final_norm = LayerNorm(cfg["emb_dim"])
|
|
|
+ self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
|
|
+
|
|
|
+ def forward(self, in_idx):
|
|
|
+ batch_size, seq_len = in_idx.shape
|
|
|
+ tok_embeds = self.tok_emb(in_idx)
|
|
|
+ pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
|
|
+ x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
|
|
+ x = self.drop_emb(x)
|
|
|
+ x = self.trf_blocks(x)
|
|
|
+ x = self.final_norm(x)
|
|
|
+ logits = self.out_head(x)
|
|
|
+ return logits
|
|
|
+
|
|
|
+
|
|
|
+def generate_text_simple(model, idx, max_new_tokens, context_size):
|
|
|
+ # idx is (B, T) array of indices in the current context
|
|
|
+ for _ in range(max_new_tokens):
|
|
|
+
|
|
|
+ # Crop current context if it exceeds the supported context size
|
|
|
+ # E.g., if LLM supports only 5 tokens, and the context size is 10
|
|
|
+ # then only the last 5 tokens are used as context
|
|
|
+ idx_cond = idx[:, -context_size:]
|
|
|
+
|
|
|
+ # Get the predictions
|
|
|
+ with torch.no_grad():
|
|
|
+ logits = model(idx_cond)
|
|
|
+
|
|
|
+ # Focus only on the last time step
|
|
|
+ # (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
|
|
+ logits = logits[:, -1, :]
|
|
|
+
|
|
|
+ # Get the idx of the vocab entry with the highest logits value
|
|
|
+ idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
|
|
+
|
|
|
+ # Append sampled index to the running sequence
|
|
|
+ idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
|
|
+
|
|
|
+ return idx
|
|
|
+
|
|
|
+
|
|
|
+#####################################
|
|
|
+# Chapter 5
|
|
|
+#####################################
|
|
|
+
|
|
|
+
|
|
|
+def text_to_token_ids(text, tokenizer):
|
|
|
+ encoded = tokenizer.encode(text)
|
|
|
+ encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
|
|
+ return encoded_tensor
|
|
|
+
|
|
|
+
|
|
|
+def token_ids_to_text(token_ids, tokenizer):
|
|
|
+ flat = token_ids.squeeze(0) # remove batch dimension
|
|
|
+ return tokenizer.decode(flat.tolist())
|
|
|
+
|
|
|
+
|
|
|
+def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):
|
|
|
+
|
|
|
+ # For-loop is the same as before: Get logits, and only focus on last time step
|
|
|
+ for _ in range(max_new_tokens):
|
|
|
+ idx_cond = idx[:, -context_size:]
|
|
|
+ with torch.no_grad():
|
|
|
+ logits = model(idx_cond)
|
|
|
+ logits = logits[:, -1, :]
|
|
|
+
|
|
|
+ # New: Filter logits with top_k sampling
|
|
|
+ if top_k is not None:
|
|
|
+ # Keep only top_k values
|
|
|
+ top_logits, _ = torch.topk(logits, top_k)
|
|
|
+ min_val = top_logits[:, -1]
|
|
|
+ logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
|
|
|
+
|
|
|
+ # New: Apply temperature scaling
|
|
|
+ if temperature > 0.0:
|
|
|
+ logits = logits / temperature
|
|
|
+
|
|
|
+ # Apply softmax to get probabilities
|
|
|
+ probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
|
|
+
|
|
|
+ # Sample from the distribution
|
|
|
+ idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
|
|
+
|
|
|
+ # Otherwise same as before: get idx of the vocab entry with the highest logits value
|
|
|
+ else:
|
|
|
+ idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
|
|
+
|
|
|
+ # Same as before: append sampled index to the running sequence
|
|
|
+ idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
|
|
+
|
|
|
+ return idx
|