Parcourir la source

remove requests dependency (#125)

Sebastian Raschka il y a 1 an
Parent
commit
44b3815960

+ 37 - 1
ch05/01_main-chapter-code/gpt_download.py

@@ -1,5 +1,9 @@
+
+
 import os
-import requests
+import urllib.request
+
+# import requests
 import json
 import numpy as np
 import tensorflow as tf
@@ -36,6 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -62,6 +67,37 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
+
+
+def download_file(url, destination):
+    # Send a GET request to download the file
+    with urllib.request.urlopen(url) as response:
+        # Get the total file size from headers, defaulting to 0 if not present
+        file_size = int(response.headers.get("Content-Length", 0))
+
+        # Check if file exists and has the same size
+        if os.path.exists(destination):
+            file_size_local = os.path.getsize(destination)
+            if file_size == file_size_local:
+                print(f"File already exists and is up-to-date: {destination}")
+                return
+
+        # Define the block size for reading the file
+        block_size = 1024  # 1 Kilobyte
+
+        # Initialize the progress bar with total file size
+        progress_bar_description = os.path.basename(url)  # Extract filename from URL
+        with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+            # Open the destination file in binary write mode
+            with open(destination, "wb") as file:
+                # Read the file in chunks and write to destination
+                while True:
+                    chunk = response.read(block_size)
+                    if not chunk:
+                        break
+                    file.write(chunk)
+                    progress_bar.update(len(chunk))  # Update progress bar
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):

+ 35 - 1
ch05/01_main-chapter-code/gpt_generate.py

@@ -6,7 +6,9 @@
 import json
 import numpy as np
 import os
-import requests
+import urllib.request
+
+# import requests
 import tensorflow as tf
 import tiktoken
 import torch
@@ -57,6 +59,7 @@ def download_and_load_gpt2(model_size, models_dir):
     return settings, params
 
 
+"""
 def download_file(url, destination):
     # Send a GET request to download the file in streaming mode
     response = requests.get(url, stream=True)
@@ -83,6 +86,37 @@ def download_file(url, destination):
             for chunk in response.iter_content(block_size):
                 progress_bar.update(len(chunk))  # Update progress bar
                 file.write(chunk)  # Write the chunk to the file
+"""
+
+
+def download_file(url, destination):
+    # Send a GET request to download the file
+    with urllib.request.urlopen(url) as response:
+        # Get the total file size from headers, defaulting to 0 if not present
+        file_size = int(response.headers.get("Content-Length", 0))
+
+        # Check if file exists and has the same size
+        if os.path.exists(destination):
+            file_size_local = os.path.getsize(destination)
+            if file_size == file_size_local:
+                print(f"File already exists and is up-to-date: {destination}")
+                return
+
+        # Define the block size for reading the file
+        block_size = 1024  # 1 Kilobyte
+
+        # Initialize the progress bar with total file size
+        progress_bar_description = os.path.basename(url)  # Extract filename from URL
+        with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+            # Open the destination file in binary write mode
+            with open(destination, "wb") as file:
+                # Read the file in chunks and write to destination
+                while True:
+                    chunk = response.read(block_size)
+                    if not chunk:
+                        break
+                    file.write(chunk)
+                    progress_bar.update(len(chunk))  # Update progress bar
 
 
 def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):