Browse Source

Alt weight loading code via PyTorch (#585)

* Alt weight loading code via PyTorch

* commit additional files
Sebastian Raschka 7 months ago
parent
commit
3f93d73d6d

+ 1 - 1
README.md

@@ -113,7 +113,7 @@ Several folders contain optional materials as a bonus for interested readers:
 - **Chapter 4: Implementing a GPT model from scratch**
   - [FLOPS Analysis](ch04/02_performance-analysis/flops-analysis.ipynb)
 - **Chapter 5: Pretraining on unlabeled data:**
-  - [Alternative Weight Loading from Hugging Face Model Hub using Transformers](ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb)
+  - [Alternative Weight Loading Methods](ch05/02_alternative_weight_loading/)
   - [Pretraining GPT on the Project Gutenberg Dataset](ch05/03_bonus_pretraining_on_gutenberg)
   - [Adding Bells and Whistles to the Training Loop](ch05/04_learning_rate_schedulers)
   - [Optimizing Hyperparameters for Pretraining](ch05/05_bonus_hparam_tuning)

+ 51 - 15
ch05/01_main-chapter-code/ch05.ipynb

@@ -2133,20 +2133,53 @@
    "id": "127ddbdb-3878-4669-9a39-d231fbdfb834",
    "metadata": {},
    "source": [
-    "<span style=\"color:darkred\">\n",
-    "  <ul>\n",
-    "    <li>For an alternative way to load the weights from the Hugging Face Hub, see <a href=\"../02_alternative_weight_loading\">../02_alternative_weight_loading</a></li>\n",
-    "    <ul>\n",
-    "      <li>This is useful if:</li>\n",
-    "      <ul>\n",
-    "        <li>the weights are temporarily unavailable</li>\n",
-    "        <li>a company VPN only permits downloads from the Hugging Face Hub but not from the OpenAI CDN, for example</li>\n",
-    "        <li>you are having trouble with the TensorFlow installation (the original weights are stored in TensorFlow files)</li>\n",
-    "      </ul>\n",
-    "    </ul>\n",
-    "    <li>The <a href=\"../02_alternative_weight_loading\">../02_alternative_weight_loading</a> code notebooks are replacements for the remainder of this section 5.5</li>\n",
-    "  </ul>\n",
-    "</span>\n"
+    "---\n",
+    "\n",
+    "---\n",
+    "\n",
+    "\n",
+    "⚠️ **Note: Some users may encounter issues in this section due to TensorFlow compatibility problems, particularly on certain Windows systems. TensorFlow is required here only to load the original OpenAI GPT-2 weight files, which we then convert to PyTorch.\n",
+    "If you're running into TensorFlow-related issues, you can use the alternative code below instead of the remaining code in this section.\n",
+    "This alternative is based on pre-converted PyTorch weights, created using the same conversion process described in the previous section. For details, refer to the notebook:\n",
+    "[../02_alternative_weight_loading/weight-loading-pytorch.ipynb](../02_alternative_weight_loading/weight-loading-pytorch.ipynb) notebook.**\n",
+    "\n",
+    "```python\n",
+    "file_name = \"gpt2-small-124M.pth\"\n",
+    "# file_name = \"gpt2-medium-355M.pth\"\n",
+    "# file_name = \"gpt2-large-774M.pth\"\n",
+    "# file_name = \"gpt2-xl-1558M.pth\"\n",
+    "\n",
+    "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n",
+    "\n",
+    "if not os.path.exists(file_name):\n",
+    "    urllib.request.urlretrieve(url, file_name)\n",
+    "    print(f\"Downloaded to {file_name}\")\n",
+    "\n",
+    "gpt = GPTModel(BASE_CONFIG)\n",
+    "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n",
+    "gpt.eval()\n",
+    "\n",
+    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
+    "gpt.to(device);\n",
+    "\n",
+    "\n",
+    "torch.manual_seed(123)\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=gpt,\n",
+    "    idx=text_to_token_ids(\"Every effort moves you\", tokenizer).to(device),\n",
+    "    max_new_tokens=25,\n",
+    "    context_size=NEW_CONFIG[\"context_length\"],\n",
+    "    top_k=50,\n",
+    "    temperature=1.5\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))\n",
+    "```\n",
+    "\n",
+    "---\n",
+    "\n",
+    "---"
    ]
   },
   {
@@ -2197,7 +2230,10 @@
    "outputs": [],
    "source": [
     "# Relative import from the gpt_download.py contained in this folder\n",
-    "from gpt_download import download_and_load_gpt2"
+    "\n",
+    "from gpt_download import download_and_load_gpt2\n",
+    "# Alternatively:\n",
+    "# from llms_from_scratch.ch05 import download_and_load_gpt2"
    ]
   },
   {

+ 2 - 0
ch05/02_alternative_weight_loading/README.md

@@ -2,6 +2,8 @@
 
 This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI.
 
+- [weight-loading-pytorch.ipynb](weight-loading-pytorch.ipynb): (Recommended) contains code to load the weights from PyTorch state dicts that I created by converting the original TensorFlow weights
+
 - [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library
 
 - [weight-loading-hf-safetensors.ipynb](weight-loading-hf-safetensors.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `safetensors` library directly (skipping the instantiation of a Hugging Face transformer model)

+ 356 - 0
ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb

@@ -0,0 +1,356 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f",
+   "metadata": {},
+   "source": [
+    "<table style=\"width:100%\">\n",
+    "<tr>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<font size=\"2\">\n",
+    "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
+    "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
+    "</font>\n",
+    "</td>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
+    "</td>\n",
+    "</tr>\n",
+    "</table>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "72953590-5363-4398-85ce-54bde07f3d8a",
+   "metadata": {},
+   "source": [
+    "# Bonus Code for Chapter 5"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a",
+   "metadata": {},
+   "source": [
+    "## Alternative Weight Loading from PyTorch state dicts"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f",
+   "metadata": {},
+   "source": [
+    "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n",
+    "- This notebook provides alternative weight loading code to load the model weights from PyTorch state dict files that I created from the original TensorFlow files and uploaded to the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) at [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch)\n",
+    "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n",
+    "\n",
+    "```python\n",
+    "state_dict = torch.load(\"model_state_dict.pth\")\n",
+    "model.load_state_dict(state_dict) \n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e3f9fbb2-3e39-41ee-8a08-58ba0434a8f3",
+   "metadata": {},
+   "source": [
+    "### Choose model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch version: 2.6.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "from importlib.metadata import version\n",
+    "\n",
+    "pkgs = [\"torch\"]\n",
+    "for p in pkgs:\n",
+    "    print(f\"{p} version: {version(p)}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "BASE_CONFIG = {\n",
+    "    \"vocab_size\": 50257,    # Vocabulary size\n",
+    "    \"context_length\": 1024, # Context length\n",
+    "    \"drop_rate\": 0.0,       # Dropout rate\n",
+    "    \"qkv_bias\": True        # Query-key-value bias\n",
+    "}\n",
+    "\n",
+    "model_configs = {\n",
+    "    \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
+    "    \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
+    "    \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
+    "    \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
+    "}\n",
+    "\n",
+    "\n",
+    "CHOOSE_MODEL = \"gpt2-small (124M)\"\n",
+    "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d78fc2b0-ba27-4aff-8aa3-bc6e04fca69d",
+   "metadata": {},
+   "source": [
+    "### Download file"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "ca224672-a0f7-4b39-9bc9-19ddde69487b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "file_name = \"gpt2-small-124M.pth\"\n",
+    "# file_name = \"gpt2-medium-355M.pth\"\n",
+    "# file_name = \"gpt2-large-774M.pth\"\n",
+    "# file_name = \"gpt2-xl-1558M.pth\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "e7b22375-6fac-4e90-9063-daa4de86c778",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Downloaded to gpt2-small-124M.pth\n"
+     ]
+    }
+   ],
+   "source": [
+    "import os\n",
+    "import urllib.request\n",
+    "\n",
+    "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n",
+    "\n",
+    "if not os.path.exists(file_name):\n",
+    "    urllib.request.urlretrieve(url, file_name)\n",
+    "    print(f\"Downloaded to {file_name}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e61f0990-74cf-4b6d-85e5-4c7d0554db32",
+   "metadata": {},
+   "source": [
+    "### Load weights"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "cda44d37-92c0-4c19-a70a-15711513afce",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import torch\n",
+    "from llms_from_scratch.ch04 import GPTModel\n",
+    "# For llms_from_scratch installation instructions, see:\n",
+    "# https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n",
+    "\n",
+    "\n",
+    "gpt = GPTModel(BASE_CONFIG)\n",
+    "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n",
+    "gpt.eval()\n",
+    "\n",
+    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
+    "gpt.to(device);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e0297fc4-11dc-4093-922f-dcaf85a75344",
+   "metadata": {},
+   "source": [
+    "### Generate text"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort moves forward, but it's not enough.\n",
+      "\n",
+      "\"I'm not going to sit here and say, 'I'm not going to do this,'\n"
+     ]
+    }
+   ],
+   "source": [
+    "import tiktoken\n",
+    "from llms_from_scratch.ch05 import generate, text_to_token_ids, token_ids_to_text\n",
+    "\n",
+    "\n",
+    "torch.manual_seed(123)\n",
+    "\n",
+    "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=gpt.to(device),\n",
+    "    idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
+    "    max_new_tokens=30,\n",
+    "    context_size=BASE_CONFIG[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=1.0\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "aa4a7912-ae51-4786-8ef4-42bd53682932",
+   "metadata": {},
+   "source": [
+    "## Alternative safetensors file"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2f774001-9cda-4b1f-88c5-ef99786a612b",
+   "metadata": {},
+   "source": [
+    "- In addition, the [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch) repository contains so-called `.safetensors` versions of the state dicts\n",
+    "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n",
+    "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer); so in that case loading the weights from the state dict files should not be a concern (anymore)\n",
+    "- However, the code block below briefly shows how to load the model from these `.safetensor` files"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "c0a4fd86-4119-4a94-ae5e-13fb60d198bc",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "file_name = \"gpt2-small-124M.safetensors\"\n",
+    "# file_name = \"gpt2-medium-355M.safetensors\"\n",
+    "# file_name = \"gpt2-large-774M.safetensors\"\n",
+    "# file_name = \"gpt2-xl-1558M.safetensors\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "20f96c2e-3469-47fb-bad3-e9173a1f1ba3",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Downloaded to gpt2-small-124M.safetensors\n"
+     ]
+    }
+   ],
+   "source": [
+    "import os\n",
+    "import urllib.request\n",
+    "\n",
+    "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n",
+    "\n",
+    "if not os.path.exists(file_name):\n",
+    "    urllib.request.urlretrieve(url, file_name)\n",
+    "    print(f\"Downloaded to {file_name}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "d16a69b3-9bb4-42f8-8e4f-cc62a1a1a083",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Load file\n",
+    "\n",
+    "from safetensors.torch import load_file\n",
+    "\n",
+    "gpt = GPTModel(BASE_CONFIG)\n",
+    "gpt.load_state_dict(load_file(file_name))\n",
+    "gpt.eval();"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "352e57f7-8d82-4c12-900c-03e41bc9de58",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort moves forward, but it's not enough.\n",
+      "\n",
+      "\"I'm not going to sit here and say, 'I'm not going to do this,'\n"
+     ]
+    }
+   ],
+   "source": [
+    "token_ids = generate(\n",
+    "    model=gpt.to(device),\n",
+    "    idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
+    "    max_new_tokens=30,\n",
+    "    context_size=BASE_CONFIG[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=1.0\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.16"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}

+ 2 - 1
pkg/llms_from_scratch/README.md

@@ -79,7 +79,8 @@ from llms_from_scratch.ch05 import (
     token_ids_to_text,
     calc_loss_batch,
     calc_loss_loader,
-    plot_losses
+    plot_losses,
+    download_and_load_gpt2
 )
 
 from llms_from_scratch.ch06 import (

+ 122 - 0
pkg/llms_from_scratch/ch05.py

@@ -4,10 +4,16 @@
 # Code: https://github.com/rasbt/LLMs-from-scratch
 
 from .ch04 import generate_text_simple
+
+import json
+import os
+import urllib.request
+
 import numpy as np
 import matplotlib.pyplot as plt
 from matplotlib.ticker import MaxNLocator
 import torch
+from tqdm import tqdm
 
 
 def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
@@ -231,3 +237,119 @@ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
     fig.tight_layout()  # Adjust layout to make room
     plt.savefig("loss-plot.pdf")
     plt.show()
+
+
+def download_and_load_gpt2(model_size, models_dir):
+    import tensorflow as tf
+
+    # Validate model size
+    allowed_sizes = ("124M", "355M", "774M", "1558M")
+    if model_size not in allowed_sizes:
+        raise ValueError(f"Model size not in {allowed_sizes}")
+
+    # Define paths
+    model_dir = os.path.join(models_dir, model_size)
+    base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
+    backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
+    filenames = [
+        "checkpoint", "encoder.json", "hparams.json",
+        "model.ckpt.data-00000-of-00001", "model.ckpt.index",
+        "model.ckpt.meta", "vocab.bpe"
+    ]
+
+    # Download files
+    os.makedirs(model_dir, exist_ok=True)
+    for filename in filenames:
+        file_url = os.path.join(base_url, model_size, filename)
+        backup_url = os.path.join(backup_base_url, model_size, filename)
+        file_path = os.path.join(model_dir, filename)
+        download_file(file_url, file_path, backup_url)
+
+    # Load settings and params
+    tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
+    settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
+    params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
+
+    return settings, params
+
+
+def download_file(url, destination, backup_url=None):
+    def _attempt_download(download_url):
+        with urllib.request.urlopen(download_url) as response:
+            # Get the total file size from headers, defaulting to 0 if not present
+            file_size = int(response.headers.get("Content-Length", 0))
+
+            # Check if file exists and has the same size
+            if os.path.exists(destination):
+                file_size_local = os.path.getsize(destination)
+                if file_size == file_size_local:
+                    print(f"File already exists and is up-to-date: {destination}")
+                    return True  # Indicate success without re-downloading
+
+            block_size = 1024  # 1 Kilobyte
+
+            # Initialize the progress bar with total file size
+            progress_bar_description = os.path.basename(download_url)
+            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+                with open(destination, "wb") as file:
+                    while True:
+                        chunk = response.read(block_size)
+                        if not chunk:
+                            break
+                        file.write(chunk)
+                        progress_bar.update(len(chunk))
+            return True
+
+    try:
+        if _attempt_download(url):
+            return
+    except (urllib.error.HTTPError, urllib.error.URLError):
+        if backup_url is not None:
+            print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
+            try:
+                if _attempt_download(backup_url):
+                    return
+            except urllib.error.HTTPError:
+                pass
+
+        # If we reach here, both attempts have failed
+        error_message = (
+            f"Failed to download from both primary URL ({url})"
+            f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
+            "\nCheck your internet connection or the file availability.\n"
+            "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
+        )
+        print(error_message)
+    except Exception as e:
+        print(f"An unexpected error occurred: {e}")
+
+
+def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
+    import tensorflow as tf
+
+    # Initialize parameters dictionary with empty blocks for each layer
+    params = {"blocks": [{} for _ in range(settings["n_layer"])]}
+
+    # Iterate over each variable in the checkpoint
+    for name, _ in tf.train.list_variables(ckpt_path):
+        # Load the variable and remove singleton dimensions
+        variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
+
+        # Process the variable name to extract relevant parts
+        variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix
+
+        # Identify the target dictionary for the variable
+        target_dict = params
+        if variable_name_parts[0].startswith("h"):
+            layer_number = int(variable_name_parts[0][1:])
+            target_dict = params["blocks"][layer_number]
+
+        # Recursively access or create nested dictionaries
+        for key in variable_name_parts[1:-1]:
+            target_dict = target_dict.setdefault(key, {})
+
+        # Assign the variable array to the last key
+        last_key = variable_name_parts[-1]
+        target_dict[last_key] = variable_array
+
+    return params

+ 1 - 1
pyproject.toml

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
 
 [project]
 name = "llms-from-scratch"
-version = "1.0.1"
+version = "1.0.2"
 description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step"
 readme = "README.md"
 requires-python = ">=3.10"