Explorar el Código

Add mean pooling experiment to classifier bonus experiments (#406)

* Add mean pooling experiment to classifier bonus  experiments

* formatting

* add average embeddings option

* pep8
Sebastian Raschka hace 1 año
padre
commit
38969864e6

+ 3 - 0
ch06/02_bonus_additional-experiments/README.md

@@ -28,6 +28,7 @@ For example,
 | 15   | gpt2-small (124M)  | pretrained | last                     | last_block       | variable: no padding (batch size 8)                    | 99.33%       | 98.66%         | 98.33%   | 1.70 min      | A100    |
 | 16   | gpt2-small (124M)  | pretrained | last                     | last_block       | longest train ex. (120); but no causal mask            | 99.23%       | 98.66%         | 95.33%   | 0.29 min      | A100    |
 | 17   | gpt2-small (124M)  | pretrained | last                     | last_block       | longest train ex. (120) and `ignore_index` for padding | 96.63%       | 99.33%         | 95.00%   | 0.28 min      | A100    |
+| 18   | gpt2-small (124M)  | pretrained | last + pooled embeddings | last_block       | longest train ex. (120)                                | 97.79%       | 99.33%         | 96.33%   | 0.32 min      | A100    |
 
  
 
@@ -52,6 +53,7 @@ You can use the following code to reproduce the experiments:
 - Row 15: `python additional_experiments.py --no_padding --batch_size 1 --accumulation_steps 8`
 - Row 16: `python additional_experiments.py --disable_causal_mask`
 - Row 17: `python additional_experiments.py --ignore_index 50256`
+- Row 18: `python additional_experiments.py --average embeddings`
 
 I've kept the LLM and dataset small on purpose, so you can run the training on a regular laptop like a MacBook Air M3 in about 15 minutes (for the default setting) in case you don't have access to a GPU.
 
@@ -70,3 +72,4 @@ I've kept the LLM and dataset small on purpose, so you can run the training on a
 9. **Padding vs no padding (Row 1 vs. 14 and 15)**: The `--no_padding` option disables the padding in the dataset, which requires training the model with a batch size of 1 since the inputs have variable lengths. This results in a better test accuracy but takes longer to train. In row 15, we additionally enable gradient accumulation with 8 steps to achieve the same batch size as in the other experiments, which helps reduce overfitting and slightly boost the test set accuracy.
 10. **Disabling the causal attention mask (Row 1 vs. 16)**: Disables the causal attention mask used in the multi-head attention module. This means all tokens can attend all other tokens. The model accuracy is slightly improved compared to the GPT model with causal mask.
 11. **Ignoring the padding indices in the loss and backpropagation (Row 1 vs. 17)**: Setting `--ignore_index 50256` excludes the `|endoftext|` padding tokens in the `cross_entropy` loss function in PyTorch. In this case, it does not have any effect because we replaced the output layers so that the token IDs are either 0 or 1 for the binary classification example. However, this setting is useful when instruction finetuning models in chapter 7.
+13. **Averaging the embeddings over all tokens (Row 1 vs. 18)**: Setting `--average_embeddings` will average the embeddings over all tokens. If this option is not used (the default), only the output embeddings at the chosen token position (specified by `--trainable_token_pos`) are considered; for example, the embeddings of the last token. Enabling `--average_embeddings` will mean-pool the embeddings of all tokens into the position chosen by `--trainable_token_pos` (the last token by default). As we can see, this improves the performance from 95.00% to 96.33% with only a minimal increase in run time (0.28 min to 0.32 min) and might be worthwhile considering in practice.

+ 67 - 22
ch06/02_bonus_additional-experiments/additional_experiments.py

@@ -181,15 +181,24 @@ def instantiate_model(choose_model, load_weights):
 
 
 def calc_loss_batch(input_batch, target_batch, model, device,
-                    trainable_token_pos=-1, ignore_index=-100):
+                    trainable_token_pos=-1, ignore_index=-100, average_embeddings=False):
     input_batch, target_batch = input_batch.to(device), target_batch.to(device)
-    logits = model(input_batch)[:, trainable_token_pos, :]  # Logits of last output token
+
+    model_output = model(input_batch)
+    if average_embeddings:
+        # Average over the sequence dimension (dim=1)
+        logits = model_output.mean(dim=1)
+    else:
+        # Select embeddings at the specified token position
+        logits = model_output[:, trainable_token_pos, :]
+
     loss = torch.nn.functional.cross_entropy(logits, target_batch, ignore_index=ignore_index)
     return loss
 
 
 def calc_loss_loader(data_loader, model, device,
-                     num_batches=None, trainable_token_pos=-1, ignore_index=-100):
+                     num_batches=None, trainable_token_pos=-1,
+                     ignore_index=-100, average_embeddings=False):
     total_loss = 0.
     if len(data_loader) == 0:
         return float("nan")
@@ -203,7 +212,8 @@ def calc_loss_loader(data_loader, model, device,
         if i < num_batches:
             loss = calc_loss_batch(
                 input_batch, target_batch, model, device,
-                trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
+                trainable_token_pos=trainable_token_pos, ignore_index=ignore_index,
+                average_embeddings=average_embeddings
             )
             total_loss += loss.item()
         else:
@@ -212,7 +222,8 @@ def calc_loss_loader(data_loader, model, device,
 
 
 @torch.no_grad()  # Disable gradient tracking for efficiency
-def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token_pos=-1):
+def calc_accuracy_loader(data_loader, model, device, num_batches=None,
+                         trainable_token_pos=-1, average_embeddings=False):
     model.eval()
     correct_predictions, num_examples = 0, 0
 
@@ -223,7 +234,15 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable
     for i, (input_batch, target_batch) in enumerate(data_loader):
         if i < num_batches:
             input_batch, target_batch = input_batch.to(device), target_batch.to(device)
-            logits = model(input_batch)[:, trainable_token_pos, :]  # Logits of last output token
+
+            model_output = model(input_batch)
+            if average_embeddings:
+                # Average over the sequence dimension (dim=1)
+                logits = model_output.mean(dim=1)
+            else:
+                # Select embeddings at the specified token position
+                logits = model_output[:, trainable_token_pos, :]
+
             predicted_labels = torch.argmax(logits, dim=-1)
 
             num_examples += predicted_labels.shape[0]
@@ -234,16 +253,19 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable
 
 
 def evaluate_model(model, train_loader, val_loader, device,
-                   eval_iter, trainable_token_pos=-1, ignore_index=-100):
+                   eval_iter, trainable_token_pos=-1,
+                   ignore_index=-100, average_embeddings=False):
     model.eval()
     with torch.no_grad():
         train_loss = calc_loss_loader(
             train_loader, model, device, num_batches=eval_iter,
-            trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
+            trainable_token_pos=trainable_token_pos, ignore_index=ignore_index,
+            average_embeddings=average_embeddings
         )
         val_loss = calc_loss_loader(
             val_loader, model, device, num_batches=eval_iter,
-            trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
+            trainable_token_pos=trainable_token_pos, ignore_index=ignore_index,
+            average_embeddings=average_embeddings
         )
     model.train()
     return train_loss, val_loss
@@ -251,7 +273,7 @@ def evaluate_model(model, train_loader, val_loader, device,
 
 def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
                             eval_freq, eval_iter, max_steps=None, trainable_token_pos=-1,
-                            accumulation_steps=1, ignore_index=-100):
+                            accumulation_steps=1, ignore_index=-100, average_embeddings=False):
     # Initialize lists to track losses and tokens seen
     train_losses, val_losses, train_accs, val_accs = [], [], [], []
     examples_seen, global_step = 0, -1
@@ -263,7 +285,8 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
         for batch_idx, (input_batch, target_batch) in enumerate(train_loader):
             loss = calc_loss_batch(
                 input_batch, target_batch, model, device,
-                trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
+                trainable_token_pos=trainable_token_pos, ignore_index=ignore_index,
+                average_embeddings=average_embeddings
             )
 
             # Use gradient accumulation if accumulation_steps > 1
@@ -286,7 +309,8 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
             if global_step % eval_freq == 0:
                 train_loss, val_loss = evaluate_model(
                     model, train_loader, val_loader, device, eval_iter,
-                    trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
+                    trainable_token_pos=trainable_token_pos, ignore_index=ignore_index,
+                    average_embeddings=average_embeddings
                 )
                 train_losses.append(train_loss)
                 val_losses.append(val_loss)
@@ -297,8 +321,14 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
                 break
 
         # New: Calculate accuracy after each epoch
-        train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token_pos=trainable_token_pos)
-        val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token_pos=trainable_token_pos)
+        train_accuracy = calc_accuracy_loader(
+            train_loader, model, device, num_batches=eval_iter,
+            trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+        )
+        val_accuracy = calc_accuracy_loader(
+            val_loader, model, device, num_batches=eval_iter,
+            trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+        )
         print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
         print(f"Validation accuracy: {val_accuracy*100:.2f}%")
         train_accs.append(train_accuracy)
@@ -359,13 +389,22 @@ if __name__ == "__main__":
             "Which token position to train. Options: 'first', 'last'."
         )
     )
+    parser.add_argument(
+        "--average_embeddings",
+        action='store_true',
+        default=False,
+        help=(
+            "Average the output embeddings from all tokens instead of using"
+            " only the embedding at the token position specified by `--trainable_token_pos`."
+        )
+    )
     parser.add_argument(
         "--context_length",
         type=str,
         default="longest_training_example",
         help=(
             "The context length of the data inputs."
-            "Options: 'longest_training_example', 'model_context_length' or integer value."
+            " Options: 'longest_training_example', 'model_context_length' or integer value."
         )
     )
     parser.add_argument(
@@ -409,7 +448,6 @@ if __name__ == "__main__":
             "The batch size used for training."
         )
     )
-
     parser.add_argument(
         "--accumulation_steps",
         type=int,
@@ -422,7 +460,6 @@ if __name__ == "__main__":
             " the latter setting uses more iterations."
         )
     )
-
     parser.add_argument(
         "--disable_causal_mask",
         action='store_true',
@@ -431,7 +468,6 @@ if __name__ == "__main__":
             "Disables the causal attention mask."
         )
     )
-
     parser.add_argument(
         "--ignore_index",
         type=int,
@@ -589,7 +625,7 @@ if __name__ == "__main__":
         model, train_loader, val_loader, optimizer, device,
         num_epochs=args.num_epochs, eval_freq=50, eval_iter=5,
         max_steps=None, trainable_token_pos=args.trainable_token_pos,
-        accumulation_steps=args.accumulation_steps
+        accumulation_steps=args.accumulation_steps, average_embeddings=args.average_embeddings
     )
 
     end_time = time.time()
@@ -600,9 +636,18 @@ if __name__ == "__main__":
     # Evaluate model
     ###############################
 
-    train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token_pos=args.trainable_token_pos)
-    val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token_pos=args.trainable_token_pos)
-    test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token_pos=args.trainable_token_pos)
+    train_accuracy = calc_accuracy_loader(
+        train_loader, model, device,
+        trainable_token_pos=args.trainable_token_pos, average_embeddings=args.average_embeddings
+    )
+    val_accuracy = calc_accuracy_loader(
+        val_loader, model, device,
+        trainable_token_pos=args.trainable_token_pos, average_embeddings=args.average_embeddings
+    )
+    test_accuracy = calc_accuracy_loader(
+        test_loader, model, device,
+        trainable_token_pos=args.trainable_token_pos, average_embeddings=args.average_embeddings
+    )
 
     print(f"Training accuracy: {train_accuracy*100:.2f}%")
     print(f"Validation accuracy: {val_accuracy*100:.2f}%")

+ 84 - 24
ch06/03_bonus_imdb-classification/train_gpt.py

@@ -81,14 +81,25 @@ def instantiate_model(choose_model, load_weights):
     return model
 
 
-def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
+def calc_loss_batch(input_batch, target_batch, model, device,
+                    trainable_token_pos=-1, average_embeddings=False):
     input_batch, target_batch = input_batch.to(device), target_batch.to(device)
-    logits = model(input_batch)[:, trainable_token, :]  # Logits of last output token
+
+    model_output = model(input_batch)
+    if average_embeddings:
+        # Average over the sequence dimension (dim=1)
+        logits = model_output.mean(dim=1)
+    else:
+        # Select embeddings at the specified token position
+        logits = model_output[:, trainable_token_pos, :]
+
     loss = torch.nn.functional.cross_entropy(logits, target_batch)
     return loss
 
 
-def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
+def calc_loss_loader(data_loader, model, device,
+                     num_batches=None, trainable_token_pos=-1,
+                     average_embeddings=False):
     total_loss = 0.
     if len(data_loader) == 0:
         return float("nan")
@@ -100,7 +111,10 @@ def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_tok
         num_batches = min(num_batches, len(data_loader))
     for i, (input_batch, target_batch) in enumerate(data_loader):
         if i < num_batches:
-            loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
+            loss = calc_loss_batch(
+                input_batch, target_batch, model, device,
+                trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+            )
             total_loss += loss.item()
         else:
             break
@@ -108,7 +122,9 @@ def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_tok
 
 
 @torch.no_grad()  # Disable gradient tracking for efficiency
-def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
+def calc_accuracy_loader(data_loader, model, device,
+                         num_batches=None, trainable_token_pos=-1,
+                         average_embeddings=False):
     model.eval()
     correct_predictions, num_examples = 0, 0
 
@@ -119,7 +135,15 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable
     for i, (input_batch, target_batch) in enumerate(data_loader):
         if i < num_batches:
             input_batch, target_batch = input_batch.to(device), target_batch.to(device)
-            logits = model(input_batch)[:, trainable_token, :]  # Logits of last output token
+
+            model_output = model(input_batch)
+            if average_embeddings:
+                # Average over the sequence dimension (dim=1)
+                logits = model_output.mean(dim=1)
+            else:
+                # Select embeddings at the specified token position
+                logits = model_output[:, trainable_token_pos, :]
+
             predicted_labels = torch.argmax(logits, dim=-1)
 
             num_examples += predicted_labels.shape[0]
@@ -129,17 +153,25 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable
     return correct_predictions / num_examples
 
 
-def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1):
+def evaluate_model(model, train_loader, val_loader, device, eval_iter,
+                   trainable_token_pos=-1, average_embeddings=False):
     model.eval()
     with torch.no_grad():
-        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
-        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
+        train_loss = calc_loss_loader(
+            train_loader, model, device, num_batches=eval_iter,
+            trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+        )
+        val_loss = calc_loss_loader(
+            val_loader, model, device, num_batches=eval_iter,
+            trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+        )
     model.train()
     return train_loss, val_loss
 
 
 def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
-                            eval_freq, eval_iter, max_steps=None, trainable_token=-1):
+                            eval_freq, eval_iter, max_steps=None, trainable_token_pos=-1,
+                            average_embeddings=False):
     # Initialize lists to track losses and tokens seen
     train_losses, val_losses, train_accs, val_accs = [], [], [], []
     examples_seen, global_step = 0, -1
@@ -150,7 +182,8 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
 
         for input_batch, target_batch in train_loader:
             optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
-            loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
+            loss = calc_loss_batch(input_batch, target_batch, model, device,
+                                   trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings)
             loss.backward()  # Calculate loss gradients
             optimizer.step()  # Update model weights using loss gradients
             examples_seen += input_batch.shape[0]  # New: track examples instead of tokens
@@ -159,7 +192,9 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
             # Optional evaluation step
             if global_step % eval_freq == 0:
                 train_loss, val_loss = evaluate_model(
-                    model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token)
+                    model, train_loader, val_loader, device, eval_iter,
+                    trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+                )
                 train_losses.append(train_loss)
                 val_losses.append(val_loss)
                 print(f"Ep {epoch+1} (Step {global_step:06d}): "
@@ -169,8 +204,14 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
                 break
 
         # New: Calculate accuracy after each epoch
-        train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
-        val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
+        train_accuracy = calc_accuracy_loader(
+            train_loader, model, device, num_batches=eval_iter,
+            trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+        )
+        val_accuracy = calc_accuracy_loader(
+            val_loader, model, device, num_batches=eval_iter,
+            trainable_token_pos=trainable_token_pos, average_embeddings=average_embeddings
+        )
         print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
         print(f"Validation accuracy: {val_accuracy*100:.2f}%")
         train_accs.append(train_accuracy)
@@ -211,13 +252,22 @@ if __name__ == "__main__":
         )
     )
     parser.add_argument(
-        "--trainable_token",
+        "--trainable_token_pos",
         type=str,
         default="last",
         help=(
             "Which token to train. Options: 'first', 'last'."
         )
     )
+    parser.add_argument(
+        "--average_embeddings",
+        action='store_true',
+        default=False,
+        help=(
+            "Average the output embeddings from all tokens instead of using"
+            " only the embedding at the token position specified by `--trainable_token_pos`."
+        )
+    )
     parser.add_argument(
         "--context_length",
         type=str,
@@ -245,12 +295,12 @@ if __name__ == "__main__":
     )
     args = parser.parse_args()
 
-    if args.trainable_token == "first":
-        args.trainable_token = 0
-    elif args.trainable_token == "last":
-        args.trainable_token = -1
+    if args.trainable_token_pos == "first":
+        args.trainable_token_pos = 0
+    elif args.trainable_token_pos == "last":
+        args.trainable_token_pos = -1
     else:
-        raise ValueError("Invalid --trainable_token argument")
+        raise ValueError("Invalid --trainable_token_pos argument")
 
     ###############################
     # Load model
@@ -358,7 +408,8 @@ if __name__ == "__main__":
     train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
         model, train_loader, val_loader, optimizer, device,
         num_epochs=args.num_epochs, eval_freq=50, eval_iter=20,
-        max_steps=None, trainable_token=args.trainable_token
+        max_steps=None, trainable_token_pos=args.trainable_token_pos,
+        average_embeddings=args.average_embeddings
     )
 
     end_time = time.time()
@@ -371,9 +422,18 @@ if __name__ == "__main__":
 
     print("\nEvaluating on the full datasets ...\n")
 
-    train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token)
-    val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token)
-    test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token)
+    train_accuracy = calc_accuracy_loader(
+        train_loader, model, device,
+        trainable_token_pos=args.trainable_token_pos, average_embeddings=args.average_embeddings
+    )
+    val_accuracy = calc_accuracy_loader(
+        val_loader, model, device,
+        trainable_token_pos=args.trainable_token_pos, average_embeddings=args.average_embeddings
+    )
+    test_accuracy = calc_accuracy_loader(
+        test_loader, model, device,
+        trainable_token_pos=args.trainable_token_pos, average_embeddings=args.average_embeddings
+    )
 
     print(f"Training accuracy: {train_accuracy*100:.2f}%")
     print(f"Validation accuracy: {val_accuracy*100:.2f}%")