فهرست منبع

Alternative weight loading via .safetensors (#507)

Sebastian Raschka 9 ماه پیش
والد
کامیت
25ea71e713

+ 1 - 0
.gitignore

@@ -31,6 +31,7 @@ appendix-E/01_main-chapter-code/gpt2
 
 
 ch05/01_main-chapter-code/gpt2/
 ch05/01_main-chapter-code/gpt2/
 ch05/02_alternative_weight_loading/checkpoints
 ch05/02_alternative_weight_loading/checkpoints
+ch05/02_alternative_weight_loading/*.safetensors
 ch05/01_main-chapter-code/model.pth
 ch05/01_main-chapter-code/model.pth
 ch05/01_main-chapter-code/model_and_optimizer.pth
 ch05/01_main-chapter-code/model_and_optimizer.pth
 ch05/03_bonus_pretraining_on_gutenberg/model_checkpoints
 ch05/03_bonus_pretraining_on_gutenberg/model_checkpoints

+ 15 - 2
ch05/01_main-chapter-code/ch05.ipynb

@@ -2103,7 +2103,20 @@
    "id": "127ddbdb-3878-4669-9a39-d231fbdfb834",
    "id": "127ddbdb-3878-4669-9a39-d231fbdfb834",
    "metadata": {},
    "metadata": {},
    "source": [
    "source": [
-    "- For an alternative way to load the weights from the Hugging Face Hub, see [../02_alternative_weight_loading](../02_alternative_weight_loading)"
+    "<span style=\"color:darkred\">\n",
+    "  <ul>\n",
+    "    <li>For an alternative way to load the weights from the Hugging Face Hub, see <a href=\"../02_alternative_weight_loading\">../02_alternative_weight_loading</a></li>\n",
+    "    <ul>\n",
+    "      <li>This is useful if:</li>\n",
+    "      <ul>\n",
+    "        <li>the weights are temporarily unavailable</li>\n",
+    "        <li>a company VPN only permits downloads from the Hugging Face Hub but not from the OpenAI CDN, for example</li>\n",
+    "        <li>you are having trouble with the TensorFlow installation (the original weights are stored in TensorFlow files)</li>\n",
+    "      </ul>\n",
+    "    </ul>\n",
+    "    <li>The <a href=\"../02_alternative_weight_loading\">../02_alternative_weight_loading</a> code notebooks are replacements for the remainder of this section 5.5</li>\n",
+    "  </ul>\n",
+    "</span>\n"
    ]
    ]
   },
   },
   {
   {
@@ -2505,7 +2518,7 @@
    "name": "python",
    "name": "python",
    "nbconvert_exporter": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "pygments_lexer": "ipython3",
-   "version": "3.10.6"
+   "version": "3.11.4"
   }
   }
  },
  },
  "nbformat": 4,
  "nbformat": 4,

+ 3 - 3
ch05/01_main-chapter-code/gpt_generate.py

@@ -155,8 +155,8 @@ def assign(left, right):
 
 
 
 
 def load_weights_into_gpt(gpt, params):
 def load_weights_into_gpt(gpt, params):
-    gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
-    gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
+    gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params["wpe"])
+    gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params["wte"])
 
 
     for b in range(len(params["blocks"])):
     for b in range(len(params["blocks"])):
         q_w, k_w, v_w = np.split(
         q_w, k_w, v_w = np.split(
@@ -229,7 +229,7 @@ def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=No
             # Keep only top_k values
             # Keep only top_k values
             top_logits, _ = torch.topk(logits, top_k)
             top_logits, _ = torch.topk(logits, top_k)
             min_val = top_logits[:, -1]
             min_val = top_logits[:, -1]
-            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
+            logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits)
 
 
         # New: Apply temperature scaling
         # New: Apply temperature scaling
         if temperature > 0.0:
         if temperature > 0.0:

+ 2 - 0
ch05/02_alternative_weight_loading/README.md

@@ -3,3 +3,5 @@
 This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI.
 This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI.
 
 
 - [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library
 - [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library
+
+- [weight-loading-hf-safetensors.ipynb](weight-loading-hf-safetensors.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `safetensors` library directly (skipping the instantiation of a Hugging Face transformer model)

+ 314 - 0
ch05/02_alternative_weight_loading/weight-loading-hf-safetensors.ipynb

@@ -0,0 +1,314 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f",
+   "metadata": {},
+   "source": [
+    "<table style=\"width:100%\">\n",
+    "<tr>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<font size=\"2\">\n",
+    "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
+    "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
+    "</font>\n",
+    "</td>\n",
+    "<td style=\"vertical-align:middle; text-align:left;\">\n",
+    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
+    "</td>\n",
+    "</tr>\n",
+    "</table>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "72953590-5363-4398-85ce-54bde07f3d8a",
+   "metadata": {},
+   "source": [
+    "# Bonus Code for Chapter 5"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a",
+   "metadata": {},
+   "source": [
+    "## Alternative Weight Loading from Hugging Face Model Hub Via `safetensors`"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f",
+   "metadata": {},
+   "source": [
+    "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n",
+    "- This notebook provides alternative weight loading code to load the model weights from the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) using `.safetensors` files\n",
+    "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n",
+    "\n",
+    "```python\n",
+    "state_dict = torch.load(\"model_state_dict.pth\")\n",
+    "model.load_state_dict(state_dict) \n",
+    "```\n",
+    "\n",
+    "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n",
+    "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "99b77109-5215-4d07-a618-4d10eff1a488",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# pip install safetensors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "numpy version: 1.26.4\n",
+      "torch version: 2.5.1\n",
+      "safetensors version: 0.4.4\n"
+     ]
+    }
+   ],
+   "source": [
+    "from importlib.metadata import version\n",
+    "\n",
+    "pkgs = [\"numpy\", \"torch\", \"safetensors\"]\n",
+    "for p in pkgs:\n",
+    "    print(f\"{p} version: {version(p)}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "d1cb0023-8a47-4b1a-9bde-54ab7eac476b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from previous_chapters import GPTModel, generate_text_simple"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "BASE_CONFIG = {\n",
+    "    \"vocab_size\": 50257,    # Vocabulary size\n",
+    "    \"context_length\": 1024, # Context length\n",
+    "    \"drop_rate\": 0.0,       # Dropout rate\n",
+    "    \"qkv_bias\": True        # Query-key-value bias\n",
+    "}\n",
+    "\n",
+    "model_configs = {\n",
+    "    \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
+    "    \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
+    "    \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
+    "    \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
+    "}\n",
+    "\n",
+    "\n",
+    "CHOOSE_MODEL = \"gpt2-small (124M)\"\n",
+    "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "e7b22375-6fac-4e90-9063-daa4de86c778",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "import urllib.request\n",
+    "from safetensors.torch import load_file\n",
+    "\n",
+    "URL_DIR = {\n",
+    "  \"gpt2-small (124M)\": \"gpt2\",         # works ok\n",
+    "  \"gpt2-medium (355M)\": \"gpt2-medium\", # this file seems to have issues via `generate`\n",
+    "  \"gpt2-large (774M)\": \"gpt2-large\",   # works ok\n",
+    "  \"gpt2-xl (1558M)\": \"gpt2-xl\"         # works ok\n",
+    "}\n",
+    "\n",
+    "url = f\"https://huggingface.co/openai-community/{URL_DIR[CHOOSE_MODEL]}/resolve/main/model.safetensors\"\n",
+    "output_file = f\"model-{URL_DIR[CHOOSE_MODEL]}.safetensors\"\n",
+    "\n",
+    "# Download file\n",
+    "if not os.path.exists(output_file):\n",
+    "    urllib.request.urlretrieve(url, output_file)\n",
+    "\n",
+    "# Load file\n",
+    "state_dict = load_file(output_file)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "4e2a4cf4-a54e-4307-9141-fb9f288e4dfa",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def assign(left, right):\n",
+    "    if left.shape != right.shape:\n",
+    "        raise ValueError(f\"Shape mismatch. Left: {left.shape}, Right: {right.shape}\")\n",
+    "    return torch.nn.Parameter(right.detach())"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "75be3077-f141-44bb-af88-62580ffd224c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def load_weights_into_gpt(gpt, params):\n",
+    "    gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params[\"wpe.weight\"])\n",
+    "    gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params[\"wte.weight\"])\n",
+    "\n",
+    "    for b in range(len(gpt.trf_blocks)):\n",
+    "        q_w, k_w, v_w = torch.chunk(\n",
+    "            params[f\"h.{b}.attn.c_attn.weight\"], 3, axis=-1)\n",
+    "        gpt.trf_blocks[b].att.W_query.weight = assign(\n",
+    "            gpt.trf_blocks[b].att.W_query.weight, q_w.T)\n",
+    "        gpt.trf_blocks[b].att.W_key.weight = assign(\n",
+    "            gpt.trf_blocks[b].att.W_key.weight, k_w.T)\n",
+    "        gpt.trf_blocks[b].att.W_value.weight = assign(\n",
+    "            gpt.trf_blocks[b].att.W_value.weight, v_w.T)\n",
+    "\n",
+    "        q_b, k_b, v_b = torch.chunk(\n",
+    "            params[f\"h.{b}.attn.c_attn.bias\"], 3, axis=-1)\n",
+    "        gpt.trf_blocks[b].att.W_query.bias = assign(\n",
+    "            gpt.trf_blocks[b].att.W_query.bias, q_b)\n",
+    "        gpt.trf_blocks[b].att.W_key.bias = assign(\n",
+    "            gpt.trf_blocks[b].att.W_key.bias, k_b)\n",
+    "        gpt.trf_blocks[b].att.W_value.bias = assign(\n",
+    "            gpt.trf_blocks[b].att.W_value.bias, v_b)\n",
+    "\n",
+    "        gpt.trf_blocks[b].att.out_proj.weight = assign(\n",
+    "            gpt.trf_blocks[b].att.out_proj.weight,\n",
+    "            params[f\"h.{b}.attn.c_proj.weight\"].T)\n",
+    "        gpt.trf_blocks[b].att.out_proj.bias = assign(\n",
+    "            gpt.trf_blocks[b].att.out_proj.bias,\n",
+    "            params[f\"h.{b}.attn.c_proj.bias\"])\n",
+    "\n",
+    "        gpt.trf_blocks[b].ff.layers[0].weight = assign(\n",
+    "            gpt.trf_blocks[b].ff.layers[0].weight,\n",
+    "            params[f\"h.{b}.mlp.c_fc.weight\"].T)\n",
+    "        gpt.trf_blocks[b].ff.layers[0].bias = assign(\n",
+    "            gpt.trf_blocks[b].ff.layers[0].bias,\n",
+    "            params[f\"h.{b}.mlp.c_fc.bias\"])\n",
+    "        gpt.trf_blocks[b].ff.layers[2].weight = assign(\n",
+    "            gpt.trf_blocks[b].ff.layers[2].weight,\n",
+    "            params[f\"h.{b}.mlp.c_proj.weight\"].T)\n",
+    "        gpt.trf_blocks[b].ff.layers[2].bias = assign(\n",
+    "            gpt.trf_blocks[b].ff.layers[2].bias,\n",
+    "            params[f\"h.{b}.mlp.c_proj.bias\"])\n",
+    "\n",
+    "        gpt.trf_blocks[b].norm1.scale = assign(\n",
+    "            gpt.trf_blocks[b].norm1.scale,\n",
+    "            params[f\"h.{b}.ln_1.weight\"])\n",
+    "        gpt.trf_blocks[b].norm1.shift = assign(\n",
+    "            gpt.trf_blocks[b].norm1.shift,\n",
+    "            params[f\"h.{b}.ln_1.bias\"])\n",
+    "        gpt.trf_blocks[b].norm2.scale = assign(\n",
+    "            gpt.trf_blocks[b].norm2.scale,\n",
+    "            params[f\"h.{b}.ln_2.weight\"])\n",
+    "        gpt.trf_blocks[b].norm2.shift = assign(\n",
+    "            gpt.trf_blocks[b].norm2.shift,\n",
+    "            params[f\"h.{b}.ln_2.bias\"])\n",
+    "\n",
+    "    gpt.final_norm.scale = assign(gpt.final_norm.scale, params[\"ln_f.weight\"])\n",
+    "    gpt.final_norm.shift = assign(gpt.final_norm.shift, params[\"ln_f.bias\"])\n",
+    "    gpt.out_head.weight = assign(gpt.out_head.weight, params[\"wte.weight\"])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "cda44d37-92c0-4c19-a70a-15711513afce",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import torch\n",
+    "from previous_chapters import GPTModel\n",
+    "\n",
+    "\n",
+    "gpt = GPTModel(BASE_CONFIG)\n",
+    "\n",
+    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
+    "load_weights_into_gpt(gpt, state_dict)\n",
+    "gpt.to(device);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Output text:\n",
+      " Every effort moves forward, but it's not enough.\n",
+      "\n",
+      "\"I'm not going to sit here and say, 'I'm not going to do this,'\n"
+     ]
+    }
+   ],
+   "source": [
+    "import tiktoken\n",
+    "from previous_chapters import generate, text_to_token_ids, token_ids_to_text\n",
+    "\n",
+    "torch.manual_seed(123)\n",
+    "\n",
+    "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+    "\n",
+    "token_ids = generate(\n",
+    "    model=gpt.to(device),\n",
+    "    idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
+    "    max_new_tokens=30,\n",
+    "    context_size=BASE_CONFIG[\"context_length\"],\n",
+    "    top_k=1,\n",
+    "    temperature=1.0\n",
+    ")\n",
+    "\n",
+    "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}

+ 1 - 1
ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb

@@ -293,7 +293,7 @@
    "name": "python",
    "name": "python",
    "nbconvert_exporter": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "pygments_lexer": "ipython3",
-   "version": "3.10.11"
+   "version": "3.11.4"
   }
   }
  },
  },
  "nbformat": 4,
  "nbformat": 4,