Przeglądaj źródła

Use instance tokenizer (#116)

* Use instance tokenizer

* consistency updates

---------

Co-authored-by: Sebastian Raschka <mail@sebastianraschka.com>
James Holcombe 1 rok temu
rodzic
commit
05718c6b94

+ 1 - 1
appendix-D/01_main-chapter-code/previous_chapters.py

@@ -25,7 +25,7 @@ class GPTDatasetV1(Dataset):
         self.target_ids = []
 
         # Tokenize the entire text
-        token_ids = tokenizer.encode(txt)
+        token_ids = self.tokenizer.encode(txt)
 
         # Use a sliding window to chunk the book into overlapping sequences of max_length
         for i in range(0, len(token_ids) - max_length, stride):

+ 1 - 1
ch02/01_main-chapter-code/ch02.ipynb

@@ -1273,7 +1273,7 @@
     "        self.target_ids = []\n",
     "\n",
     "        # Tokenize the entire text\n",
-    "        token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
+    "        token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
     "\n",
     "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
     "        for i in range(0, len(token_ids) - max_length, stride):\n",

+ 2 - 2
ch02/01_main-chapter-code/dataloader.ipynb

@@ -48,7 +48,7 @@
     "        self.target_ids = []\n",
     "\n",
     "        # Tokenize the entire text\n",
-    "        token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
+    "        token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
     "\n",
     "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
     "        for i in range(0, len(token_ids) - max_length, stride):\n",
@@ -150,7 +150,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.6"
+   "version": "3.10.10"
   }
  },
  "nbformat": 4,

+ 2 - 2
ch02/01_main-chapter-code/exercise-solutions.ipynb

@@ -256,7 +256,7 @@
     "        self.target_ids = []\n",
     "\n",
     "        # Tokenize the entire text\n",
-    "        token_ids = tokenizer.encode(txt)\n",
+    "        token_ids = self.tokenizer.encode(txt)\n",
     "\n",
     "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
     "        for i in range(0, len(token_ids) - max_length, stride):\n",
@@ -377,7 +377,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.6"
+   "version": "3.10.10"
   }
  },
  "nbformat": 4,

+ 2 - 2
ch03/01_main-chapter-code/multihead-attention.ipynb

@@ -78,7 +78,7 @@
     "        self.target_ids = []\n",
     "\n",
     "        # Tokenize the entire text\n",
-    "        token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
+    "        token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
     "\n",
     "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
     "        for i in range(0, len(token_ids) - max_length, stride):\n",
@@ -374,7 +374,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.6"
+   "version": "3.10.10"
   }
  },
  "nbformat": 4,

+ 1 - 1
ch04/01_main-chapter-code/gpt.py

@@ -19,7 +19,7 @@ class GPTDatasetV1(Dataset):
         self.target_ids = []
 
         # Tokenize the entire text
-        token_ids = tokenizer.encode(txt)
+        token_ids = self.tokenizer.encode(txt)
 
         # Use a sliding window to chunk the book into overlapping sequences of max_length
         for i in range(0, len(token_ids) - max_length, stride):

+ 1 - 1
ch04/01_main-chapter-code/previous_chapters.py

@@ -16,7 +16,7 @@ class GPTDatasetV1(Dataset):
         self.target_ids = []
 
         # Tokenize the entire text
-        token_ids = tokenizer.encode(txt)
+        token_ids = self.tokenizer.encode(txt)
 
         # Use a sliding window to chunk the book into overlapping sequences of max_length
         for i in range(0, len(token_ids) - max_length, stride):

+ 1 - 1
ch05/01_main-chapter-code/previous_chapters.py

@@ -19,7 +19,7 @@ class GPTDatasetV1(Dataset):
         self.target_ids = []
 
         # Tokenize the entire text
-        token_ids = tokenizer.encode(txt)
+        token_ids = self.tokenizer.encode(txt)
 
         # Use a sliding window to chunk the book into overlapping sequences of max_length
         for i in range(0, len(token_ids) - max_length, stride):

+ 1 - 1
ch05/02_alternative_weight_loading/previous_chapters.py

@@ -19,7 +19,7 @@ class GPTDatasetV1(Dataset):
         self.target_ids = []
 
         # Tokenize the entire text
-        token_ids = tokenizer.encode(txt)
+        token_ids = self.tokenizer.encode(txt)
 
         # Use a sliding window to chunk the book into overlapping sequences of max_length
         for i in range(0, len(token_ids) - max_length, stride):

+ 1 - 1
ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py

@@ -25,7 +25,7 @@ class GPTDatasetV1(Dataset):
         self.input_ids = []
         self.target_ids = []
 
-        token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})
+        token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})
 
         for i in range(0, len(token_ids) - max_length, stride):
             input_chunk = token_ids[i:i + max_length]

+ 1 - 1
ch05/05_bonus_hparam_tuning/previous_chapters.py

@@ -24,7 +24,7 @@ class GPTDatasetV1(Dataset):
         self.target_ids = []
 
         # Tokenize the entire text
-        token_ids = tokenizer.encode(txt)
+        token_ids = self.tokenizer.encode(txt)
 
         # Use a sliding window to chunk the book into overlapping sequences of max_length
         for i in range(0, len(token_ids) - max_length, stride):